Managing a Housing Boom

Jason Allen¹ Daniel Greenwald²

¹Bank of Canada

²MIT Sloan

SED Annual Meeting June 28, 2018

Disclaimer: Views presented are the authors' and not necessarily those of the Bank of Canada.

Motivation

- Canada undergoing sustained housing boom, actively using macroprudential policy.
- Ex: 2016 policy tightened payment-to-income (PTI) limits by over 16%.
- ▶ Good laboratory for theory (Justiniano et al., 2015, Greenwald, 2018).
 - Implies tight PTI limits should be highly effective at dampening boom.

(a) Aggregate Value-to-Income

(b) Aggregate Loan-to-Income

This Paper

- Main question: how can macroprudential policy be used effectively during a housing boom?
- ▶ **Approach:** develop a GE model with main policy tools (LTV, PTI limits) and a key institutional feature: segmented submarkets.
 - Government insured market: low down payments, tight PTI.
 - Uninsured market: high down payments, loose PTI.
 - Not specific to Canada (e.g., FHA vs. Fannie/Freddie in the US).

Main insights:

- 1. Multi-market structure allows larger housing booms.
- 2. Substitution between markets dampens effectiveness of PTI policy.
- 3. Effects of LTV (down payment) policy depend crucially on which submarket is targeted.

- ▶ Borrowing ⇒ impatient borrowers/patient savers.
 - Permanent types with fixed measure χ_i for $j \in \{b, s\}$.
 - Preferences:

$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j \mathbb{E}_t V_{j,t+1}$$

- ► Mortgage debt ⇒ durable housing.
 - Divisible, cannot change stock without prepaying mortgage.
 - Fixed housing stock, saver housing demand, no rental market.
- **Realistic mortgages** \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
- ▶ Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.
 - Intermediate production function: $y_t(i) = a_t n_t(i)$.

- ▶ Borrowing ⇒ impatient borrowers/patient savers.
 - Permanent types with fixed measure χ_j for $j \in \{b, s\}$.
 - Preferences:

$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j \mathbb{E}_t V_{j,t+1}$$

- ► Mortgage debt ⇒ durable housing.
 - Divisible, cannot change stock without prepaying mortgage.
 - Fixed housing stock, saver housing demand, no rental market.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.
 - Intermediate production function: $y_t(i) = a_t n_t(i)$.

- ▶ Borrowing ⇒ impatient borrowers/patient savers.
 - Permanent types with fixed measure χ_j for $j \in \{b, s\}$.
 - Preferences:

$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j \mathbb{E}_t V_{j,t+1}$$

- Mortgage debt \iff durable housing.
 - Divisible, cannot change stock without prepaying mortgage.
 - Fixed housing stock, saver housing demand, no rental market.
- ▶ Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
- ▶ Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.
 - Intermediate production function: $y_t(i) = a_t n_t(i)$.

- ▶ Borrowing ⇒ impatient borrowers/patient savers.
 - Permanent types with fixed measure χ_j for $j \in \{b, s\}$.
 - Preferences:

$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j \mathbb{E}_t V_{j,t+1}$$

- Mortgage debt \imp durable housing.
 - Divisible, cannot change stock without prepaying mortgage.
 - Fixed housing stock, saver housing demand, no rental market.
- ▶ Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.
 - Intermediate production function: $y_t(i) = a_t n_t(i)$.

Credit Limits

- Two credit limits at origination only.
- ▶ Two sectors: government insured (I), and uninsured (U), indexed by j.
- ▶ **Loan-to-value** constraint $m_{i,t}^* \le \theta_j^{LTV} p_t^h h_{i,t}^*$.
 - Looser in insured market: $\theta_{U}^{LTV} < \theta_{I}^{LTV}$
 - Credit limit: $\bar{m}_{i,j,t} \equiv \theta_j^{LTV} p_t^h h_{i,t}^*$.
- **Payment-to-income** constraint $(r_t^* + \nu + \alpha)m_{i,t}^* \leq (\theta_j^{PTI} \omega) \cdot y_{i,t}$.
 - Tighter in insured market: $\theta_{U}^{PTI} > \theta_{I}^{PTI}$
 - Credit limit: $\bar{m}_{i,j,t}^{PTI} = (\theta_j^{PTI} \omega) \cdot \text{income}_{i,t} / (r_t^* + \nu + \alpha).$

Constraint Structure by Submarket

Constraint space:

Constraint Structure by Submarket

Data equivalent:

(b) Uninsured Sector

Credit Limits

- Overall credit limits:
 - Within sector j: $\bar{m}_{i,t}^j = \min\left(\bar{m}_{i,j,t}^{PTI}, \bar{m}_{i,j,t}^{LTV}\right)$
 - Across sectors: $\bar{m}_{i,t} = \max\left(\bar{m}_{i,t}^I, \bar{m}_{i,t}^{II}\right)$.
- ▶ Dispersion in house size/income ratio:

$$y_{i,t} = w_t n_{b,t} e_{i,t}, \quad e_{i,t} \stackrel{iid}{\sim} \Gamma_e$$

- ▶ Endog. fractions in each submarket, and limited by each constraint.
 - Borrowers choose submarket that gives larger loan.
 - Define $F_{j,t}^{LTV}$ to be fraction constrained by LTV in sector j.

Representative Borrower's Problem

- State variables: average principal balance m_{t-1} , mortgage payment x_{t-1} , housing stock $h_{b,t-1}$.
- Control variables: nondurable consumption $c_{b,t}$, labor supply $n_{b,t}$, prepayment rate, size of new houses $h_{b,t}^*$, size of new loans m_t^* .
- ▶ Budget constraint:

$$c_{b,t} \leq \underbrace{(1-\tau_y)w_t n_{b,t}}_{\text{labor income}} - \underbrace{\pi_t^{-1}(1-\tau_y)x_{t-1}}_{\text{interest payment}} - \underbrace{\pi_t^{-1}\nu_j m_{t-1}}_{\text{principal payment}} \\ + \underbrace{\rho\left(m_t^* - (1-\nu)\rho\pi_t^{-1}m_{t-1}\right)}_{\text{net new debt issuance}} - \underbrace{\rho p_t^h\left(h_{b,t}^* - h_{b,t-1}\right)}_{\text{housing purchases}} \\ - \underbrace{\delta p_t^h h_{b,t-1}}_{\text{maintenance}} + \underbrace{T_{b,t}}_{\text{transfers}}$$

 $\qquad \qquad \text{Debt limit: } m_t^* \leq \int \max \left\{ \min \left(\bar{m}_{i,I,t}^{LTV}, \bar{m}_{i,I,t}^{PTI} \right), \min \left(\bar{m}_{i,U,t}^{LTV}, \bar{m}_{i,U,t}^{PTI} \right) \right\} d\Gamma_e(e_i)$

House Prices

Representative borrower housing optimality condition:

$$p_t^h = \frac{u_{b,t}^h/u_{b,t}^c + \mathbb{E}_t \left\{ \Lambda_{b,t+1} p_{t+1}^h \left[1 - \delta - (1-\rho) \mathcal{C}_{t+1} \right] \right\}}{1 - \mathcal{C}_t}$$

- $ightharpoonup C_t$ is marginal collateral value of housing.
 - Unconstrained borrowers: $C_t = 0$, $p_t^h = PV$ of rents
 - Single market, LTV constraint: $C_t = \mu_t \theta^{LTV}$
 - Single market, LTV and PTI constraints: $C_t = \mu_t F_t^{LTV} \theta^{LTV}$
 - Dual market, LTV and PTI constraints: $C_t = \mu_t \left(F_{U,t}^{LTV} \theta_U^{LTV} + F_{I,t}^{LTV} \theta_I^{LTV} \right)$
- Uninsured conditionally more likely to be LTV constrained
 - Increase in uninsured share can boost house prices.

Calibration and Solution Technique

- Credit limits: taken directly from regulation.
 - Insured market: $\theta_I^{LTV} = 95\%$, $\theta_I^{PTI} = 44\%$.
 - Uninsured market: $\theta_{II}^{LTV} = 80\%$, $\theta_{I}^{PTI} = 70\%$ (≈ ∞).
- Preference and technology parameters: match key moments.
 - Ratio of house value to income among borrowers.
 - Typical mortgage rate.
 - Average time between renewals.
- Solution technique: nonlinear perfect foresight paths.

Intuition: Debt Limits

- ► Sample debt limit functions for household with income \$100k.
 - Increasing regions: LTV-constrained (high collateral value).
 - Flat regions: PTI-constrained (low collateral value).
 - Marginal collateral value jumps discontinuously at switch points.
- Aggregate housing demand related to average steepness of curve.

Experiment: Housing Boom

- Generate boom using anticipated increase in housing utility.
 - Compare Benchmark to economies with only insured or uninsured sectors.
- ► As house prices rise, LTV limits loosen (collateral ↑) but PTI limits don't.
- With two markets, substitution allows for much more credit growth.
 - Closer to all uninsured than all insured.

Aside: Parallel with US Boom/Bust

- ▶ Below: share of loans securitized by Ginnie Mae (FHA + VA).
 - Like insured sector. Low down payments (3.5%) + strict income reqs.
- ▶ Huge substitution out of insured sector during boom.

Intuition: Shock to PTI Limit

- ▶ Direct effect on insured market: reduce collateral demand (flatten curve), sharply tighten debt limits.
- Substitution into uninsured market largely undoes both effects.
 - Access to uninsured market mostly replaces lost borrowing.
 - Switch from PTI-constrained in insured to LTV-constrained in uninsured increases collateral demand.

(a) By Market $(\theta_I^{PTI} \downarrow)$

(b) Overall $(\theta_I^{PTI} \downarrow)$

Experiment: Shock to PTI Limits

- ightharpoonup October 2016: new rule that PTI ratios must be evaluated at "posted" rate (\sim 200bp higher than contract rate) in insured market only.
 - Effectively 16.5% tightening of PTI limit.
- Compare benchmark to economy with single (insured) market.
- ► Including uninsured submarket cuts effect of policy by more than half.
 - Large substitution out of insured market.

Intuition: Shock to LTV Limits

- ► Tight θ_I^{LTV} reduces debt limits, but has no direct effect on switching.
- Slightly increases fraction LTV constrained, collateral demand.

Intuition: Shock to LTV Limits

- ► Tight θ_U^{LTV} induces switching to insured market.
- ► Flattens curve and reduces collateral demand, prices.
- But switching dampens effect on debt.

Experiment: Shock to LTV Limits

- ► Experiments reducing each LTV limit by 10ppt (Insured: 95% \rightarrow 85%, Uninsured: 80% \rightarrow 70%).
- ▶ Tightening in insured space has much bigger effect on debt (\sim 4x) but almost no impact on house prices.
- ► Tightening in uninsured space substantially dampens prices by driving borrowers out of uninsured market, pushing down collateral demand.

Conclusion

- ► GE model with key macroprudential tools and segmented submarkets.
- Substitution allows larger booms, dampens effectiveness of PTI policy.
- ► Effects of LTV tightening depend on targeted submarket:
 - Insured market: large reduction in debt, little effect on house prices.
 - Uninsured market: smaller decline in debt, large fall in house prices.
- Next steps:
 - Directly compare theoretical and observed impact of policies.
 - Split between booming and flat regions.
 - Examine influence of mortgage market structure on monetary policy.
 - Analyze impact of policies in case of house price decline.