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Cross-Sectional Asset Pricing

> Key research questions:

1. Why do some stocks have higher returns than others?

2. What can this tell us about investors’ preferences and the risks they face?
» Fundamental equation(s) of finance:
E, [MtHRi,tH - 1} =0 E, [Mngt +1] =0
» Unconditional equivalents

E [(MMR,,M —1) zt] —0 E [MtHR‘Z?,t Hzt} -0

> Challenge: estimate M; 1 as a function of observable factors.

Daniel Greenwald 15.472: Cross-Sectional Asset Pricing Fall 2020

2/37



Linear SDF Approach

> Linear specification for SDF: ~ M; = b'f;.

- Can drop constant WLOG by redefining f/ = (1, f/).

» Linear GMM moment conditions:

/ / _ I e / _
E| Z; | R ft+1 b —1 =0 Er | Zy Rijq ft+1 b =0
M~ N Y SN NN Y
mxn \ nx1 1xk kx1 mxn px1 1xk kX1

» Why not estimate E; [M;41X;11 — pt] = 0?

» Note: for excess return version, need to normalize.

Daniel Greenwald 15.472: Cross-Sectional Asset Pricing Fall 2020 3/37



Linear SDF Approach

> Linear specification for SDF: ~ M; = b'f;.

- Can drop constant WLOG by redefining f/ = (1, f/).

» Linear GMM moment conditions:

/ / _ I e / _
E| Z; | R ft+1 b —1 =0 Er | Zy Rijq ft+1 b =0
M~ N Y SN NN Y
mxn \ nx1 1xk kx1 mxn px1 1xk kX1

» Why not estimate E¢ [M;4+1x:+1 — pt] = 02 Need GMM data to be stationary.

» Note: for excess return version, need to normalize.
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Warm-Up: Single Factor is Excess Return

> Simplest case: single factor f; which is an excess return, My, 1 = o + Y1ft+1-
> Recall: E (RS, ) = ~Cov (R, q, M1 ) E(Miip) ™!

> Now use some algebra and use the fact that f; is itself an excess return.

_ COV(R /f )
1 1141
E(R) ) = —BVar(imE (M) ', = Sl

E (fir1) = —Var(fiy1)11 (Me1) ™"

» Putting it all together: E (R?,t) = BiE(f)

> Implementation: regress R}, = a; + Bif + ¢;+ and then jointly test a; = 0.
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Testing « = 0

> Could state as “DM” test:
2 \1a—1 7 2o \l1a—1 7 d 2 -
T(gR,t(bR) Sy 8ri(br) — gu s (bu)'Sy; gu/t(bu)) — X” (#restrictions)
> But can also just do Wald test, which requires only unrestricted estimate
N A N N -1 .
Tr(by)’ [R(bu)’vuzz(bu)} r(by) % x2(#restrictions)
where restriction is 7(b) = 0 and R(b) = Vr(b), and V = acov(b) under efficient GMM.

» In this case: .
Ta' Ve = x*(n)

where V7 is top left block of acov(b) for b’ = (a/, '), and n = #assets.
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Testing &« = 0: Special Case

> “Recall” that for OLS with homoskedastic, serially uncorrelated errors:
Vors = E[xix}) " @ Elese]]

» Herex; = (1,f;), so

Vors = [El E(ﬂ)} B ® % = Var(f;) [Eﬁz) _E(ﬁ)] X

(f) E(f) —E(f) 1

> Top left block:

Vi1 = Var(fi) 'E(f)T = (1 + 5;?0);)) by

» GMM can easily handle heteroskedasticity and autocorrelation.
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General Factor Structure

> General structure: multiple factors, not excess returns. M;11 = o + ')"Il_ft_i'_]_.

- Assume that Cov(fiy1,fi+1), Cove(fi1, Re41) are constant over time (constant beta).

» Now have

E+(R{,1) = —BCov(fi11)71Rs: = BAs 1)
E (R{1) = BA @)

where B is the OLS coefficient matrix on R} = a + Bf; + &;.

» Goal: test whether (2) holds while correcting for fact that B is estimated.

- Note that we are losing information by going from (1) to (2).
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When Factor # Excess Return

> Need a different approach this time.

- Before, E(f;) = A means
E(R}y) = pir = w;i + BiE(fy) = a; =0.

- Now, E(fy) # A:
E(R{;) = BiA = a; + BiE(f;) = Rj;, =B; (A —E(ft)) +Bifs + €4
————
a;
so we need to know A to test this.

» Previously, were getting k restrictions from theory (definition of excess return).

- Now, need to estimate A using at least k new moment conditions.

- Many possible moments to add, which should we use?
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Special Case: L.I.D. Return

> Ideal approach: WWMLD (“what would maximum likelihood do?”).

» If returns (errors) are jointly i.i.d. normal:

T
1
L =const— Y =(R¢—BA)S (RS —BA
Y 30— B2~ - B
oL L e I o—1

Amr = (B'S7'B)"1B/S71R®

» This is the GLS estimator of the regression R® = BA + q;

» Can use our moment condition to target this solution.
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Efficient GMM Approach

> Can impose something like this in GMM.

> System of equations:

Ri —a—Fip
E|F(R¢—a—F|B)| =0
RC—A'B

where F; = (F;® 1), A = (A® ).
» Connection to MLE? Imagine estimating last moment by itself for known B:

9T = R° — BA A= (B'S71B)"'B'sIR¢

> Note that we still estimate § using OLS. (Why?)
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Efficient GMM Approach

P> Sample moment condition:

where R = Er (RY).

» Derivative matrix for b’ = (a’, B/, \'):

I F 0 1 f 0
d=—E|F FF, 0| =—E| |fi fiff| ®L, |0
0 A B 0 X B
» Sample equivalent:
T |I F O
dr — — = /
T T; F; F@ 0
=110 A" B
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Three-Pass Regression

> Two-pass regression recovers A values if all factors are included, but can be biased (in both
stages) if factors are omitted.

- Giglio and Xiu (2019): use PCA to span common sources of variation in returns.

> Assume that you want to price a factor gy and you observe a vector of returns r; with

re = By + Bor + uy
gt =0+nv+2z

> Pass 1: Compute first p PCs of r;. Denote components 9, loadings as f.
> Pass 2: Regress average returns 7 on j to obtain risk prices 4.

» Pass 3: Regress ¢; on 0; and compute expected return as §, = 777.
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Fama-MacBeth

» Historically important procedure useful for understanding GMM estimate.

1. Estimate betas using
RS, = a; + Bifi + e
2. For each t, estimate A; using cross-sectional estimate
Ri; = ABi+ iy

3. Estimate A, &, and asymptotic covariances using

A-lya i- Ly
== t &= = Xt
thl thl
. 1T & s s . 1 o
V(A) ==Y (A —A) V()==) (& —&)
Tt=1 Tt=1
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Fama-MacBeth

>

Totally different approach (regress for fixed t then average). But delivers similar result
because p; terms are constant across time.

Stacking Rf = BA + a; implies A+ = (B'B)"'B'RS.
Sample expectation of this object:
Er(Ar) = (BB)'BR"

identical to cross-sectional OLS estimator on averaged data: R® = BA + &.
Sample covariance assuming «; independent across time:
Covr(A¢) = (B'B)"'B'Covr(RY)B(B'B) !
= (B'B)"'B'Covr(&:)B(B'B)~
=T~ Y(B'B)"'B'Covr()B(B'B) !

which is averaged OLS, corrected for X-Eqn corr. (no serial corr., known, not estimated B).
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Time-Varying SDF

» Specification M, 1 = a + b'f; 1 implies that risk premia and risk free rates should be constant
p t+1 +1 1mMp p

over time. If they aren't, this can lead to poor performance even with correct factors.
> Instead, could use M;;1 = a; + bjf; 1. Unrestricted problem hard to estimate.

» More parsimonious approach:

ar = Yo + 11zt
b =10 + 1zt
> Write in factor form using
1 70
Zt i
£ = b=

LT fen 10
Zifir1 M

so that M1 = b’f; 1. Now use existing tools.
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Lettau and Ludvigson (2001)

» Use fiy1 = Acyyq as in traditional C-CAPM.

> But also use z; = cay;.
- This is the residual from a cointegrating relationship inspired by the budget constraint.

- Good empirical predictor of stock returns.

> Estimates equivalent to two stage procedure

R,y =i+ Binze + Pigfi1 + Bi2tfii1 + €4
E[R{; (1] = BizAz + BifAr + Bif Az

allowing for testing of the z-specific parameters.

> LL find strong explanatory power, rivaling Fama-French when labor income included as an
additional factor.
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Lettau and Ludvigson (2001)
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Lettau and Ludvigson (2001)

7.5

> Good state: high cay (low risk premia).

» Intuition: different portfolios can have
same average betas, but what matters is if
B is high when risk premia (A;) are high.

30 35 40 45 50 55 60 65 70

good state bad state @l good state bod state

> Question: what is cay; and why does it
proxy for risk premia?

Bato
15 25 35 45 55 65 75

~2.5 1.5 -0.5 05 15 25 35 45 55 65 75

-1.5 =05 05

good state bod state
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Derivation of cay

> Complete markets rep. agent economy.

> Denote W; as aggregate wealth (human capital plus asset holdings), C; as consumption, and
Ry 141 as net return on aggregate wealth.

> Accumulation equation for aggregate wealth:
Wip1 = Rop1 (W — Cr).
> Rearranging the budget constraint and taking log-linear approximation:

Awpq = k+ 1y + (1 —p ") (cr — wp).

where lowercase letters denote log variables, p = (W — C)/W.
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Tool: Lag Polynomial

> Lag operator L defined by L¥x; = x;_;.

» Geometric sum formula: QE o ) x=(1-p)!
j=0

» Lag polynomial versions:

ipjxt_j = inijt = (1_PL)_1xt/ ZP]xH-] ZPJL ]xt (1_pL_1)71xt
= =0

» Denote cw; = ¢; — wy. Then:

CW — PCWy11 = (1 - pL_l) wer = p (k4 rypr1 — Acpy)
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Log-Linear Approximation

> Solving forward and imposing the transversality condition limy_,, 0*(c;4x — w;x) = 0:

o0
¢t —wp = const + Y 0 (rppi1 — Acpy1).
j=1

» This is an ex post relation, but it most also hold ex ante:

(e )
¢t — wy = const + E; Z 0 (rwp41 — Act1).
j=1

> Conclusion: wealth-consumption ratio should contain predictable information on future
consumption growth and wealth returns.
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Further Approximations

» Challenge #1: can’t observe human capital component of wealth.
1. Take log-linear approximation

wy ~ way + (1 — w)hy
Tt ~ Wrgr+ (1 —w)ry,

2. Assume that
hy = x4y + 2z

where y; is labor income, and z; is stationary with mean zero.

» Challenge #2: can’t observe service flows from durables.

- Approach: assume that total consumption proportional to nondurables/services: c; = Acy .
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Putting it All Together

» Putting it all together
i .
Acyt — wap — (1 — w)yr = Ey EPZ{[WT’@H:‘ + (1 —w)re) — ACH—i} + (1 —w)z.
i=1

» Scale the LHS to define
cayr = const + cpt — Palt — Pyyt

where B, = w/A, By = (1 —w)/A.

» Note that cay; is stationary, even though (c, 4, y) all appear to contain unit roots.

- Estimate using cointegration.
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Estimation of Cointegration Parameters

> Estimate f,, B, using the dynamic least squares (DLS) method of Stock and Watson (1993).

> DLS applied to this model specifies a single OLS regression equation

k k
Cnt = &+ Baar + ,By]/t + Z ba,iAat—i + Z by,iA]/t—i + €t 3)
ik =k

» Point estimates are: ¢, = 0.61 + 0.31a; + 0.59%y;

> Adjusting for A = 1.1 implies ~ 2/3 of wealth in human capital.
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Dynamic Least Squares

» To see why (3) works, define x; = (at, y¢) and note that (¢, as, y¢) being individually I(1) and
cointegrated implies the triangular representation

N =+ ) 4)

Cnp = o+ B'xi + 1. @)

> The obstacle is that u? and x; may be correlated. To orthogonalize them, project u? onto {u}}

and use (4) to obtain
E[uf {ut }] = E[uf[{Axe}] = pu +d(L)Axt

where d(L) is an unknown two-sided lag polynomial.

> Substituting into (5) now yields

cnt = p+ Bxr +d(L)Axt + v?

where 0?7 L x;.
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DLS In Practice

> To apply the DLS estimator, assume d(L) = Y*_ , d;L’. LL use k = 8.

> Stock (1987) establishes that parameter estimates are superconsistent, in that T(B — f) Lo
instead of the usual v'T(B — B) % 0.

» Intuition: sharp disparity between stationary (finite cov) and nonstationary (infinite cov)
distributions allows for faster convergance.

» Superconsistency allows us to use the estimated cay, as if it were the true cay; (i.e. no
adjustment for generated regressors).
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Lewellan and Nagel (2006)

» Many conditional CAPM papers seek to reproduce return properties of Fama-French
portfolios using time-varying SDFs and a single traditional factor (R or Acy).

> LN argue that this approach cannot explain observed asset pricing “anomalies.”
» Two-part argument:

1. Existing studies ignore theoretical relations when freely estimating A.

2. Directly estimating conditional CAPM yields poor performance.
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Lewellan and Nagel (2006)

>

Goal: see if reasonable data generating processes can produce large unconditional alphas
observed on some portfolios:
“ =E ( lt+1) :Bz

Conditional relation for single factor (market excess return):
Er (Rips1) = Bihs A= Er(Rjyp41)
Taking unconditional expectations (defining B; = E (B;+), A = E (At)):
E(Rf;;1) = Bir +Cov(Bir, At)
Rewrite unconditional alpha as

' = A(Bi — B) + Cov(Biyp, Av)

where B* (from unconditional regression) is not necessarily the same as p!
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Unconditional B: Intuition

> Example: §; and A; are positively correlated.

0.10 1
E[R; I R,]

0.08 1
0.06 -
0.04 -

0.02 1

Ry

-0.08 -0.06 -0.04 -0- 0.p0 0.02 0.04 0.06 0.08
-0.02

-0.04

True

-0.06 1 —— Unconditional regression

-0.08 -
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Unconditional Beta of a Stock
» Assume CAPM holds, so that: Rf, 1= ﬁi,tRfﬂ,t 41 T it
> Define 02 , = Var; (R¢,,), 04 = Var (R¢ ), and also define 77;; = B;; — ;. Then:
Cov(Rf,1, Ry, 111) = Cov (BitRy, 111, Ry i1)

= Bioy +E [Wi,t (an,t+1)2} — E (1i4R5111) E(RY141)
= By + E [’7i,t (A% + Urzn,t>:| — AE (17;4A¢)
= B0+ Cov (Bis, A7) +Cov By, 07s) — ACoV (Bis, M)
= /31-0,%1 + Cov (,Bi,tr (A — )L)2> + Cov (,Bi,trai,t) + ACov (Bit, At)

» Unconditional beta:

B! = i+ 02 [Cov (Bis, (At = 1)) + Cov (Bis, 02s ) — ACoV (Bi A
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Unconditional Beta of a Stock

» Putting it all together:
at = (1= 220;,2) Cov (Bip, M) — Ay 2Cov (Bis, (Ar = A)?) = Acy,2Cov (Bis, o7
> Removing quantitatively small terms A? /02 and Cov (B;;, (Ar — A)?) yields
' = Cov (Bis, M) = Acy,*Cov Bz, 07 )

> Let’s look for an upper bound. Ignore second term for now, so that
“lyl ~ COV(ﬂi,tAt) = pO'/gO'A

> Large alphas require extremely volatile betas. Do these show up in the data?
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Estimating Conditional Betas
» Conditional CAPM approaches generate ;; series but depend on correctly specified model.
» LN’s approach: directly estimate B;; using high-frequency data.
> Key idea: assume f; is stable within e.g., one quarter: ;; = f; ;. Then run daily regression
R, = ajg+ Big(L)Ry, ; + €

> Lags are useful for allowing some stocks (esp. small stocks) to have delayed reaction to
market return. Approach follows Dimson (1979)

R, = iy + BigoRoe + Big1Ro i1 + Big2 [(Riq,t—z + Ry 3+ R y)/ 3} t &t

» If conditional CAPM is correct, then conditional alphas should be close to zero.

- Also produce estimates of §; ; that can be used to evaluate theory.
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Conditional Betas

» Betas do move around over time.

» Vary systematically with relevant state 07
variables (risk-free rate, dividend yield, 0z

A /) I\/\A A
term spread, etc.). 7°‘§ge4,\4A A Ve To85, T Tos92
BillAv VA W TR

> But not enough to overturn anomalies.

» Conditional alphas large and close to 22
unconditional versions.

o v/\\ A f\«-/\jv\ A A AN A'MA\f/\
ol \_\771,}\/\1 Vigrs2 \/\/&52 \/"\]*992.2 v 1999.\
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Implied Alphas

> Examples: book-market portfolio earns 0.59% monthly on ¢ = 0.25, momentum portfolio
earns 1.01% monthly on g = 0.60.

op op
g, 0.3 0.5 0.7 0.3 0.5 0.7
p= 0.6 p= 1.0
0.1 0.02 0.03 0.04 0.03 0.05 0.07
0.2 0.04 0.06 0.08 0.06 0.10 0.14
0.3 0.05 0.09 0.12 0.09 0.15 0.21
0.4 0.07 0.12 0.17 0.12 0.20 0.28
0.5 0.09 0.15 0.21 0.15 0.25 0.35
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What About C-CAPM?

> Don't have high frequency consumption data, so hard to estimate conditional betas directly.

» But LL theory implies that

R 1 =ai+ Bzt + (,Bi,f + ,Bi,f,zzt>ft+1
——— -~

ajt

Bit
E[R},] = Bird + Cov (i, At) = Bid + BifCov(ze, At) = Bid + Bifz - P2,00200

v

LL implies Cov(zt, A¢) =~ 0.07%. Since 0, ~ 0.019, so 0 > 3.2% quarterly.

- Average A is small (-0.02% to 0.22% quarterly), need highly volatile (and skewed) price of risk.

v

So what'’s the point? Does it matter if cay; is factor or scaling variable?

v

General warning: be careful explaining portfolios with strong factor structure.
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Pitfalls of Cross-Sectional Asset Pricing Research

» Typical approach: run XSAP regs, declare victory if p-value on long-short return < 0.05.

» Many problems with this approach (Harvey, 2017).

Many possible factors, unsuccessful ones not reported (publication bias).

Many possible specifications for each factor (p-hacking).

Base rate p(H) is very important for p(H|data). Very low base rate implies many false positives.

» How can you avoid this trap?

Do not consider any ¢ < 3 to be strong unilateral evidence (Harvey, Liu, Zhu, 2016 RFS).

Use Minimum Bayes Factor (Harvey, 2017). Weighs prior on null against strongest possible
Bayesian evidence against the null (taken over all priors on alternative hypothesis).

For large n tests (e.g., alphas) False Discovery Rate control (Benjamini, Hochberg, 1995; Giglio,
Liao, Xiu 2020)

Bring theory and other supporting evidence to bear.
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Recap: Cross-Sectional Asset Pricing

» Framework based on beta representations implied by theory.

> Estimating risk premia/risk prices uses generated regressors, can easily perform inference
using GMM.

- Fama-MacBeth is special case not correcting for generated regressors.

> Adding additional variables helps, but need to use theory to determine if these are factors or
changes in risk prices.

» Tools:

1. Cointegration/dynamic least squares

2. Lag polynomial
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