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Cross-Sectional Asset Pricing

I Key research questions:

1. Why do some stocks have higher returns than others?

2. What can this tell us about investors’ preferences and the risks they face?

I Fundamental equation(s) of finance:

Et

[
Mt+1Ri,t+1 − 1

]
= 0 Et

[
Mt+1Re

i,t+1

]
= 0

I Unconditional equivalents

E
[
(Mt+1Ri,t+1 − 1) zt

]
= 0 E

[
Mt+1Re

i,t+1zt

]
= 0

I Challenge: estimate Mt+1 as a function of observable factors.
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Linear SDF Approach

I Linear specification for SDF: Mt = b′ft.

- Can drop constant WLOG by redefining f ′t =
(
1, f̃ ′t

)
.

I Linear GMM moment conditions:

E

 Z′t︸︷︷︸
m×n

Rt+1︸︷︷︸
n×1

f ′t+1︸︷︷︸
1×k

b︸︷︷︸
k×1

−1


 = 0 Et

 Z′t︸︷︷︸
m×n

Re
t+1︸︷︷︸

n×1

f ′t+1︸︷︷︸
1×k

b︸︷︷︸
k×1

 = 0

I Why not estimate Et [Mt+1xt+1 − pt] = 0?

I Note: for excess return version, need to normalize.
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I Linear GMM moment conditions:
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 Z′t︸︷︷︸
m×n

Re
t+1︸︷︷︸

n×1

f ′t+1︸︷︷︸
1×k

b︸︷︷︸
k×1

 = 0

I Why not estimate Et [Mt+1xt+1 − pt] = 0? Need GMM data to be stationary.

I Note: for excess return version, need to normalize.
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Warm-Up: Single Factor is Excess Return

I Simplest case: single factor ft which is an excess return, Mt+1 = γ0 + γ1ft+1.

I Recall: E
(

Re
i,t+1

)
= −Cov

(
Re

i,t+1, Mt+1

)
E(Mt+1)

−1

I Now use some algebra and use the fact that ft is itself an excess return.

E
(
Re

i,t+1
)
= −βiVar(ft+1)γ1E (Mt+1)

−1 , βi =
Cov(Ri,t+1, ft+1)

Var(ft+1)

E (ft+1) = −Var(ft+1)γ1 (Mt+1)
−1

I Putting it all together: E
(

Re
i,t

)
= βiE (ft)

I Implementation: regress Re
i,t = αi + βift + εi,t and then jointly test αi = 0.
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Testing α = 0

I Could state as “DM” test:

T
(

gR,t(b̂R)
′S−1

U gR,t(b̂R)− gU,t(b̂U)
′S−1

U gU,t(b̂U)
)

d−→ χ2(#restrictions)

I But can also just do Wald test, which requires only unrestricted estimate

Tr(b̂U)
′
[
R(b̂U)

′V̂UR(b̂U)
]−1

r(b̂U)
d−→ χ2(#restrictions)

where restriction is r(b) = 0 and R(b) = ∇r(b), and V̂ = acov(b̂) under efficient GMM.

I In this case:
Tα′V−1

11 α
d−→ χ2(n)

where V11 is top left block of acov(b) for b′ = (α′, β′), and n = #assets.
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Testing α = 0: Special Case

I “Recall” that for OLS with homoskedastic, serially uncorrelated errors:

VOLS = E[xtx′t]
−1 ⊗ E[εtε

′
t]

I Here x′t = (1, ft), so

VOLS =

[
1 E(ft)

E(ft) E(f 2
t )

]−1

⊗ Σ = Var(ft)−1
[

E(f 2
t ) −E(ft)

−E(ft) 1

]
⊗ Σ.

I Top left block:

V11 = Var(ft)−1E(f 2
t )Σ =

(
1 +

E(ft)2

Var(ft)

)
Σ

I GMM can easily handle heteroskedasticity and autocorrelation.
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General Factor Structure

I General structure: multiple factors, not excess returns. Mt+1 = γ0 + γ′1ft+1.

- Assume that Covt(ft+1, ft+1), Covt(ft+1, Rt+1) are constant over time (constant beta).

I Now have

Et(Re
t+1) = −BCov(ft+1)γ1Rf ,t = Bλt (1)

E
(
Re

t+1
)
= Bλ (2)

where B is the OLS coefficient matrix on Re
t = a + Bft + εt.

I Goal: test whether (2) holds while correcting for fact that B is estimated.

- Note that we are losing information by going from (1) to (2).
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When Factor 6= Excess Return

I Need a different approach this time.

- Before, E(ft) = λ means
E(Re

i,t) = βiλ = αi + βiE(ft) =⇒ αi = 0.

- Now, E(ft) 6= λ:

E(Re
i,t) = Biλ = ai + BiE(ft) =⇒ Re

i,t = Bi (λ− E(ft))︸ ︷︷ ︸
ai

+Bift + εi,t

so we need to know λ to test this.

I Previously, were getting k restrictions from theory (definition of excess return).

- Now, need to estimate λ using at least k new moment conditions.

- Many possible moments to add, which should we use?
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Special Case: I.I.D. Return

I Ideal approach: WWMLD (“what would maximum likelihood do?”).

I If returns (errors) are jointly i.i.d. normal:

L = const−
T

∑
t=1

1
2
(Re

t − Bλ)′S−1(Re
t − Bλ)

∂L
∂λ

=
T

∑
t=1

(Re
t − Bλ)′ S−1B = 0

λ̂ML = (B′S−1B)−1B′S−1R̄e

I This is the GLS estimator of the regression R̄e = Bλ + αi

I Can use our moment condition to target this solution.
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Efficient GMM Approach

I Can impose something like this in GMM.

I System of equations:

E

 Re
t − a− F′tβ

Ft (Re
t − a− F′tβ)

Re
t −Λ′β

 = 0

where Ft = (Ft ⊗ In), Λ = (λ⊗ In).

I Connection to MLE? Imagine estimating last moment by itself for known B:

gT = R̄e − Bλ λ̂ = (B′S−1B)−1B′S−1R̄e

I Note that we still estimate β using OLS. (Why?)
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Efficient GMM Approach
I Sample moment condition:

gT =
1
T

T

∑
t=1

 Re
t − a− F′tβ

Ft (Re
t − a− F′tβ)

Re
t −Λ′β


where R̄e = ET (Re

t).

I Derivative matrix for b′ = (a′, β′, λ′):

d = −E

 I Ft 0
Ft FtF′t 0
0 Λ′ B

 = −E

1 ft
ft ftf ′t
0 λ′

⊗ In,

0
0
B


I Sample equivalent:

dT = − 1
T

T

∑
t=1

 I Ft 0
Ft FtF′t 0
0 Λ′ B
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Three-Pass Regression

I Two-pass regression recovers λ values if all factors are included, but can be biased (in both
stages) if factors are omitted.

- Giglio and Xiu (2019): use PCA to span common sources of variation in returns.

I Assume that you want to price a factor gt and you observe a vector of returns rt with

rt = βγ + βvt + ut

gt = δ + ηvt + zt

I Pass 1: Compute first p PCs of rt. Denote components v̂t, loadings as β̂.

I Pass 2: Regress average returns r̄ on β̂ to obtain risk prices γ̂.

I Pass 3: Regress gt on v̂t and compute expected return as γ̂g = η̂γ̂.
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Fama-MacBeth
I Historically important procedure useful for understanding GMM estimate.

1. Estimate betas using

Re
i,t = ai + β′ift + εi,t

2. For each t, estimate λt using cross-sectional estimate

Re
i,t = λ′tβi + αi,t

3. Estimate λ̂, α̂, and asymptotic covariances using

λ̂ =
1
T

T

∑
t=1

λ̂t α̂ =
1
T

T

∑
t=1

α̂t

V(λ̂) =
1
T

T

∑
t=1

(λ̂t − λ̂)2 V(α̂) =
1
T

T

∑
t=1

(α̂t − α̂)2
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Fama-MacBeth
I Totally different approach (regress for fixed t then average). But delivers similar result

because βi terms are constant across time.

I Stacking Re
t = Bλ + αt implies λ̂t = (B′B)−1B′Re

t .

I Sample expectation of this object:

ET(λ̂T) = (B′B)−1B′R̄e

identical to cross-sectional OLS estimator on averaged data: R̄e = Bλ + ᾱ.

I Sample covariance assuming αt independent across time:

CovT(λ̂t) = (B′B)−1B′CovT(Re
t)B(B

′B)−1

= (B′B)−1B′CovT(α̂t)B(B′B)−1

= T−1(B′B)−1B′CovT(ᾱ)B(B′B)−1

which is averaged OLS, corrected for X-Eqn corr. (no serial corr., known, not estimated B).
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Time-Varying SDF
I Specification Mt+1 = a + b′ft+1 implies that risk premia and risk free rates should be constant

over time. If they aren’t, this can lead to poor performance even with correct factors.

I Instead, could use Mt+1 = at + b′tft+1. Unrestricted problem hard to estimate.

I More parsimonious approach:

at = γ0 + γ1zt

bt = η0 + η1zt.

I Write in factor form using

ft+1 =


1
zt

ft+1
ztft+1

 b =


γ0
γ1
η0
η1


so that Mt+1 = b′ft+1. Now use existing tools.
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Lettau and Ludvigson (2001)

I Use ft+1 = ∆ct+1 as in traditional C-CAPM.

I But also use zt = cayt.

- This is the residual from a cointegrating relationship inspired by the budget constraint.

- Good empirical predictor of stock returns.

I Estimates equivalent to two stage procedure

Re
i,t+1 = ai + βi,zzt + βi,f ft+1 + βi,f ,zztft+1 + εi

t+1

E[Re
i,t+1] = βi,zλz + βi,f λf + βi,f ,zλf ,z.

allowing for testing of the z-specific parameters.

I LL find strong explanatory power, rivaling Fama-French when labor income included as an
additional factor.
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Lettau and Ludvigson (2001)

I Figures:

a. CAPM.

b. Fama-French

c. Consumption CAPM

d. Scaled Consumption CAPM

Fig. 1.—Realized vs. fitted returns: 25 Fama-French portfolios: a, CAPM; b, Fama-French;
c, consumption CAPM; d, consumpion CAPM scaled. The figure shows the pricing errors
for each of the 25 Fama-French portfolios for the four models. Each two-digit number
represents one portfolio. The first digit refers to the size quintiles (1 indicating the smallest
firms, 5 the largest), and the second digit refers to book-to-market quintiles (1 indicating
the portfolio with the lowest book-to-market ratio, 5 with the highest). The pricing errors
are generated using the Fama-MacBeth regressions in table 3 below. The scaling variable
is cay.̂

This content downloaded from 018.189.009.101 on September 15, 2016 13:36:06 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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Lettau and Ludvigson (2001)

I Good state: high cay (low risk premia).

I Intuition: different portfolios can have
same average betas, but what matters is if
β is high when risk premia (λt) are high.

I Question: what is cayt and why does it
proxy for risk premia?

Fig. 2.—Conditional consumption betas in good and bad states. Each part of the figure
displays the average consumption beta in good and bad states, conditional on forzt�1

portfolio i, equal to where is the average value of in state s, s pi i i ¯ ¯B { b � b z , z caŷs Dc Dcz s s

good or bad. A good state is defined as a quarter in which the scaling variable is onecaŷ
standard deviation below its mean value. A bad state is defined as a quarter in which the
scaling variable is one standard deviation above its mean value. Part a compares foricay B̂ s

the small-growth portfolio 11 and the small-value portfolio 15 (portfolios in the smallest
size category and smallest and largest book-market category, respectively); part b compares

for the semismall-growth portfolio 21 and the semismall-value portfolio 25 (portfoliosiBs

in the next-to-smallest size category and smallest and largest book-market category, re-
spectively); part c compares for the semilarge-growth portfolio 41 and the semilarge-iBs

value portfolio 45 (in the next-to-largest size category and smallest and largest book-market
category, respectively); part d compares for the large-growth portfolio 51 and the large-iBs

value portfolio 55 (in the largest size category and smallest and largest book-market cat-
egory, respectively).

This content downloaded from 018.189.009.101 on September 15, 2016 13:36:06 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).
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Derivation of cay

I Complete markets rep. agent economy.

I Denote Wt as aggregate wealth (human capital plus asset holdings), Ct as consumption, and
Rw,t+1 as net return on aggregate wealth.

I Accumulation equation for aggregate wealth:

Wt+1 = Rw,t+1(Wt − Ct).

I Rearranging the budget constraint and taking log-linear approximation:

∆wt+1 = k + rw,t+1 + (1− ρ−1)(ct −wt).

where lowercase letters denote log variables, ρ = (W− C)/W.
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Tool: Lag Polynomial

I Lag operator L defined by Lkxt = xt−k.

I Geometric sum formula:

(
∞

∑
j=0

ρj

)
x = (1− ρ)−1x

I Lag polynomial versions:

∞

∑
j=0

ρjxt−j =
∞

∑
j=0

ρjLjxt = (1− ρL)−1 xt,
∞

∑
j=0

ρjxt+j =
∞

∑
j=0

ρjL−jxt =
(

1− ρL−1
)−1

xt

I Denote cwt = ct −wt. Then:

cwt − ρcwt+1 =
(

1− ρL−1
)

wct = ρ (k + rw,t+1 − ∆ct+1)
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Log-Linear Approximation

I Solving forward and imposing the transversality condition limk→∞ ρk(ct+k −wt+k) = 0:

ct −wt = const +
∞

∑
j=1

ρj(rw,t+1 − ∆ct+1).

I This is an ex post relation, but it most also hold ex ante:

ct −wt = const + Et

∞

∑
j=1

ρj(rw,t+1 − ∆ct+1).

I Conclusion: wealth-consumption ratio should contain predictable information on future
consumption growth and wealth returns.
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Further Approximations

I Challenge #1: can’t observe human capital component of wealth.

1. Take log-linear approximation

wt ' ωat + (1−ω)ht

rw,t ' ωra,t + (1−ω)rh,t

2. Assume that
ht = κ + yt + zt

where yt is labor income, and zt is stationary with mean zero.

I Challenge #2: can’t observe service flows from durables.

- Approach: assume that total consumption proportional to nondurables/services: ct = λcn,t.
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Putting it All Together

I Putting it all together

λcn,t −ωat − (1−ω)yt = Et

∞

∑
i=1

ρi
{
[ωra,t+i + (1−ω)rh,t+i]− ∆ct+i

}
+ (1−ω)zt.

I Scale the LHS to define
cayt ≡ const + cn,t − βaat − βyyt

where βa = ω/λ, βy = (1−ω)/λ.

I Note that cayt is stationary, even though (c, a, y) all appear to contain unit roots.

- Estimate using cointegration.
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Estimation of Cointegration Parameters

I Estimate βa, βy using the dynamic least squares (DLS) method of Stock and Watson (1993).

I DLS applied to this model specifies a single OLS regression equation

cn,t = α + βaat + βyyt +
k

∑
i=−k

ba,i∆at−i +
k

∑
i=−k

by,i∆yt−i + εt (3)

I Point estimates are: cn,t = 0.61 + 0.31at + 0.59yt

I Adjusting for λ = 1.1 implies ∼ 2/3 of wealth in human capital.
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Dynamic Least Squares
I To see why (3) works, define xt = (at, yt) and note that (cn,t, at, yt) being individually I(1) and

cointegrated implies the triangular representation

∆xt = µ1 + u1
t (4)

cn,t = µ2 + β′xt + u2
t . (5)

I The obstacle is that u2
t and xt may be correlated. To orthogonalize them, project u2

t onto {u1
t }

and use (4) to obtain
E[u2

t |{u1
t }] = E[u2

t |{∆xt}] = µu + d(L)∆xt

where d(L) is an unknown two-sided lag polynomial.

I Substituting into (5) now yields

cn,t = µ + β′xt + d(L)∆xt + v2
t

where v2
t ⊥ xt.
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DLS In Practice

I To apply the DLS estimator, assume d(L) = ∑k
i=−k diLi. LL use k = 8.

I Stock (1987) establishes that parameter estimates are superconsistent, in that T(β− β̂)
p−→ 0

instead of the usual
√

T(β− β̂)
p−→ 0.

I Intuition: sharp disparity between stationary (finite cov) and nonstationary (infinite cov)
distributions allows for faster convergance.

I Superconsistency allows us to use the estimated ĉayt as if it were the true cayt (i.e. no
adjustment for generated regressors).
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Lewellan and Nagel (2006)

I Many conditional CAPM papers seek to reproduce return properties of Fama-French
portfolios using time-varying SDFs and a single traditional factor (Rm,t or ∆ct).

I LN argue that this approach cannot explain observed asset pricing “anomalies.”

I Two-part argument:

1. Existing studies ignore theoretical relations when freely estimating λ.

2. Directly estimating conditional CAPM yields poor performance.
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Lewellan and Nagel (2006)

I Goal: see if reasonable data generating processes can produce large unconditional alphas
observed on some portfolios:

αu
i = E

(
Re

i,t+1
)
− βu

i λ

I Conditional relation for single factor (market excess return):

Et
(
Re

i,t+1
)
= βi,tλt λt = Et(Re

m,t+1)

I Taking unconditional expectations (defining βi ≡ E (βi,t), λ ≡ E (λt)):

E
(
Re

i,t+1
)
= βiλ + Cov(βi,t, λt)

I Rewrite unconditional alpha as

αu = λ(βi − βu) + Cov(βi,t, λt)

where βu (from unconditional regression) is not necessarily the same as β!
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Unconditional β: Intuition
I Example: βt and λt are positively correlated.

2.3. Magnitude

Our goal is to understand whether au in Eq. (3) might be large enough to explain
observed anomalies. We begin with a few observations to simplify the general formula.
Notice, first, that the market’s squared Sharpe ratio, g2/s2M in the first term, is very small
for monthly returns: for example, using the Center for Research in Security Prices (CRSP)
value-weighted index from 1964 to 2001, g ¼ 0.47% and sM ¼ 4.5%, so the squared
Sharpe ratio is 0.011. Further, the quadratic (gt–g)

2, in the second term, is also quite small
for plausible parameter values: if g equals 0.5% and gt varies between, say, 0.0% and
1.0%, the quadratic is at most 0.0052 ¼ 0.000025. Plugging a variable this small into the
second term would have a negligible effect on alpha. These observations suggest the
following approximation for au:

au ¼ covðbt; gtÞ �
g
s2M

cov bt; s
2
t

� �
. (4)

Eq. (4) says that, when the conditional CAPM holds, a stock’s unconditional alpha
depends primarily on how bt covaries with the market risk premium and with market
volatility3.
To explore the magnitude of Eq. (4), it is useful to consider the simplest case

when bt covaries only with the market risk premium: auEcov(bt,gt) ¼ rsbsg,
where s denotes a standard deviation and r is the correlation between bt and gt. Table 1

ARTICLE IN PRESS

E [Ri | RM]

-0.08

-0.06

-0.04

-0.02
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0.04
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0.08

0.10

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

RM

True
Unconditional regression

Fig. 1. The unconditional relation between Ri and RM. The figure shows the excess return on stock i predicted as a

function of the excess market return. The dark line shows the true E[Ri|RM] and the thin line shows the

unconditional linear regression of Ri on RM. Returns are conditionally normally distributed, with constant

volatility, and the CAPM holds period by period. Beta and the expected risk premium are perfectly positively

correlated.

3The approximation becomes perfect as the return interval shrinks because g2 and (gt–g)
2 go to zero more

quickly than the other terms in Eq. (3). We thank John Campbell for this observation.

J. Lewellen, S. Nagel / Journal of Financial Economics 82 (2006) 289–314294
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Unconditional Beta of a Stock
I Assume CAPM holds, so that: Re

i,t+1 = βi,tRe
m,t+1 + εi,t+1.

I Define σ2
m,t ≡ Vart

(
Re

m,t
)
, σ2

m ≡ Var
(
Re

m,t
)
, and also define ηi,t ≡ βi,t − βi. Then:

Cov(Re
i,t+1, Re

m,t+1) = Cov
(

βi,tRe
m,t+1, Re

m,t+1
)

= βiσ
2
m + E

[
ηi,t
(
Re

m,t+1
)2
]
− E

(
ηi,tRe

m,t+1
)

E(Re
m,t+1)

= βiσ
2
m + E

[
ηi,t

(
λ2

t + σ2
m,t

)]
− λE (ηi,tλt)

= βiσ
2
m + Cov

(
βi,t, λ2

t

)
+ Cov

(
βi,t, σ2

m,t

)
− λCov (βi,t, λt)

= βiσ
2
m + Cov

(
βi,t, (λt − λ)2

)
+ Cov

(
βi,t, σ2

m,t

)
+ λCov (βi,t, λt)

I Unconditional beta:

βu
i = βi + σ−2

m

[
Cov

(
βi,t, (λt − λ)2

)
+ Cov

(
βi,t, σ2

m,t

)
− λCov (βi,t, λt)

]
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Unconditional Beta of a Stock

I Putting it all together:

αu
i =

(
1− λ2σ−2

m

)
Cov (βi,t, λt)− λσ−2

m Cov
(

βi,t, (λt − λ)2
)
− λσ−2

m Cov
(

βi,t, σ2
m,t

)
I Removing quantitatively small terms λ2/σ2

m and Cov
(

βi,t, (λt − λ)2) yields

αu
i ' Cov (βi,t, λt)− λσ−2

m Cov
(

βi,t, σ2
m,t

)
I Let’s look for an upper bound. Ignore second term for now, so that

αu
i ' Cov(βi,tλt) = ρσβσλ

I Large alphas require extremely volatile betas. Do these show up in the data?
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Estimating Conditional Betas
I Conditional CAPM approaches generate βi,t series but depend on correctly specified model.

I LN’s approach: directly estimate βi,t using high-frequency data.

I Key idea: assume βi,t is stable within e.g., one quarter: βi,t = βi,q. Then run daily regression

Re
i,t = αi,q + βi,q(L)Re

m,t + εi,t

I Lags are useful for allowing some stocks (esp. small stocks) to have delayed reaction to
market return. Approach follows Dimson (1979)

Re
i,t = αi,q + βi,q,0Re

m,t + βi,q,1Re
m,t−1 + βi,q,2

[(
Re

m,t−2 + Re
m,t−3 + Re

m,t−4
)

/3
]
+ εi,t

I If conditional CAPM is correct, then conditional alphas should be close to zero.

- Also produce estimates of βi,q that can be used to evaluate theory.
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Conditional Betas

I Betas do move around over time.

I Vary systematically with relevant state
variables (risk-free rate, dividend yield,
term spread, etc.).

I But not enough to overturn anomalies.

I Conditional alphas large and close to
unconditional versions.

interpreted as the change in beta predicted by a one-standard-deviation change in the state
variables. The slopes indicate that betas vary significantly with TBILL, DY, and TERM.
Small, Value, and Winner stocks have high betas when TBILL and TERM are low (slopes
of –0.08 to –0.14) and when DY is high (slopes of 0.11–0.14). The effect of RM,�6 on
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Fig. 2. Conditional betas, 1964–2001. The figure plots conditional betas for size, B/M, and momentum portfolios.

The dark line is the point estimate and the light lines indicate a two-standard-deviation confidence interval. Betas

are estimated semiannually (non-overlapping windows) using daily returns. The portfolios are formed from all

NYSE and Amex stocks on CRSP/Compustat. We begin with 25 size-B/M portfolios (5� 5 sort, breakpoints

determined by NYSE quintiles) and ten return-sorted portfolios, all value weighted. ‘S–B’ is the average return on

the five low-market-cap portfolios (Small) minus the average return on the five high-market-cap portfolios (Big).

‘V–G’ is the average return on the five high-B/M portfolios (Value) minus the average return on the five low-B/M

portfolios (Growth). Return-sorted portfolios are formed based on past six-month returns. ‘W–L’ is the return on

the top decile (Winners) minus the return on the bottom decile (Losers).
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Implied Alphas

I Examples: book-market portfolio earns 0.59% monthly on σβ = 0.25, momentum portfolio
earns 1.01% monthly on σβ = 0.60.

reports the au implied by various combinations of r, sb, and sg. The parameters are chosen
as follows:

� We consider three values for sb–0.3, 0.5, and 0.7 – that probably span or, more likely
exceed, standard deviations encountered in practice. Note, for example, that if b ¼ 1.0
and sb ¼ 0.5, a two-standard-deviation interval for beta extends all the way from 0.0 to
2.0. In comparison, Fama and French (1992) estimate unconditional betas for beta-
sorted decile portfolios and find a minimum of 0.79 and a maximum of 1.73. Further,
we estimate later that size, B/M, and momentum portfolios have sb’s between 0.25 and
0.60, while Fama and French (1997) estimate that 48 industry portfolios have sb’s
between 0.12 and 0.42.
� We consider five values for sg ranging from 0.1% to 0.5% monthly. The average risk

premium from 1964 to 2001 is 0.47%, using the CRSP value-weighted index, so a
standard deviation as high as 0.5% implies very large changes in the risk premium
relative to its mean (a two-standard-deviation interval extends from –6% to 18%
annualized). For additional perspective, an ordinary least squares (OLS) regression of
NYSE returns on log dividend yield suggests that sg ¼ 0.3% from 1946 to 2000
(Lewellen, 2004), while the calibrations of Campbell and Cochrane (1999) produce a
standard deviation between 0.4% and 0.5% monthly (using statistics in their Tables 2
and 5).
� Finally, we consider two values for r, 0.6 and 1.0. The first correlation is chosen

arbitrarily; the second provides an upper bound for the pricing error.

The key result in Table 1 is that unconditional alphas are generally small relative to
observed anomalies. The alphas are typically less than 0.20%, with a maximum of 0.35%
for our most extreme combination of parameters (which we regard as quite generous).
We estimate later that a long-short B/M strategy has sb ¼ 0.25, so Table 1 suggests that
time variation in beta can explain an unconditional alpha of at most 0.15% monthly,
small in comparison to our empirical estimate of 0.59% (std. error, 0.14%). The same is
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Table 1

Implied deviations from the unconditional CAPM

The table reports unconditional alphas (% monthly) implied by the conditional CAPM for various assumptions

about time variation in beta (bt) and the market risk premium (gt). sb is the standard deviation of bt, sg is the
standard deviation of gt, and r is the correlation between bt and gt. Market volatility and bt are assumed to be

uncorrelated.

sb sb

sg 0.3 0.5 0.7 0.3 0.5 0.7

r ¼ 0.6 r ¼ 1.0

0.1 0.02 0.03 0.04 0.03 0.05 0.07

0.2 0.04 0.06 0.08 0.06 0.10 0.14

0.3 0.05 0.09 0.12 0.09 0.15 0.21

0.4 0.07 0.12 0.17 0.12 0.20 0.28

0.5 0.09 0.15 0.21 0.15 0.25 0.35

J. Lewellen, S. Nagel / Journal of Financial Economics 82 (2006) 289–314 295
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What About C-CAPM?
I Don’t have high frequency consumption data, so hard to estimate conditional betas directly.

I But LL theory implies that

Re
i,t+1 = ai + βi,zzt︸ ︷︷ ︸

ai,t

+
(

βi,f + βi,f ,zzt

)
︸ ︷︷ ︸

βi,t

ft+1

E[Re
i,t] = βiλ + Cov(βi,t, λt) = βiλ + βi,f ,zCov(zt, λt) = βiλ + βi,f ,z · ρz,λσzσλ

I LL implies Cov(zt, λt) ' 0.07%. Since σz ' 0.019, so σλ ≥ 3.2% quarterly.

- Average λ is small (-0.02% to 0.22% quarterly), need highly volatile (and skewed) price of risk.

I So what’s the point? Does it matter if cayt is factor or scaling variable?

I General warning: be careful explaining portfolios with strong factor structure.
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Pitfalls of Cross-Sectional Asset Pricing Research
I Typical approach: run XSAP regs, declare victory if p-value on long-short return < 0.05.

I Many problems with this approach (Harvey, 2017).

- Many possible factors, unsuccessful ones not reported (publication bias).

- Many possible specifications for each factor (p-hacking).

- Base rate p(H) is very important for p(H|data). Very low base rate implies many false positives.

I How can you avoid this trap?

- Do not consider any t < 3 to be strong unilateral evidence (Harvey, Liu, Zhu, 2016 RFS).

- Use Minimum Bayes Factor (Harvey, 2017). Weighs prior on null against strongest possible
Bayesian evidence against the null (taken over all priors on alternative hypothesis).

- For large n tests (e.g., alphas) False Discovery Rate control (Benjamini, Hochberg, 1995; Giglio,
Liao, Xiu 2020)

- Bring theory and other supporting evidence to bear.
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Recap: Cross-Sectional Asset Pricing

I Framework based on beta representations implied by theory.

I Estimating risk premia/risk prices uses generated regressors, can easily perform inference
using GMM.

- Fama-MacBeth is special case not correcting for generated regressors.

I Adding additional variables helps, but need to use theory to determine if these are factors or
changes in risk prices.

I Tools:

1. Cointegration/dynamic least squares

2. Lag polynomial
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