Debt Covenants and the Macroeconomy: The Interest Coverage Channel

Daniel L. Greenwald

MIT Sloan

NBER Summer Institute, July 2019
Introduction

- Non-residential investment is a key driver of monetary policy response.
 - Natural link: $6T corporate debt market.
 - Large body of work on transmission through credit limits ("financial accelerator").

- Firm credit limits typically modeled as caps on market leverage.
 - But actual covenants observed in debt contracts are quite different.
 - But many covenants depend on more than earnings, firms often have several at once.

- **Research question**: how does firm credit limit structure influence macro dynamics?
 - Focus on **Interest Coverage (IC)** covenants that limit ratio of interest payments to earnings.
This Paper

▶ **Approach**: combine structural model with firm-level empirical evidence.

▶ **Stylized Facts**: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.

▶ **Main Finding #1**: Interest Coverage covenants amplify interest rate transmission.
 - Much stronger responses of debt, investment, output than under alternative covenant types.
 - Reason: implied limits directly shifted by interest rates.
 - Data: $r_t \downarrow 100 \text{bp} \implies$ extra 9.5% 8Q asset growth for firms with IC covenants only.

▶ **Main Finding #2**: Combination of IC + limit on stock of debt \implies state dependence.
 - Stronger transmission when rates are already high (and IC covenants are tighter).
 - Estimated share with IC as tightest covenant varied from 7% to 60% over 1997-2007 period.
 - Data: $r_t \downarrow 100 \text{bp} \implies$ extra 2.1% 8Q asset growth for firms w/ these covs when r_{t-1} 100bp higher.
This Paper

▶ **Approach**: combine structural model with firm-level empirical evidence.

▶ **Stylized Facts**: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.

▶ **Main Finding #1**: Interest Coverage covenants amplify interest rate transmission.
 - Much stronger responses of debt, investment, output than under alternative covenant types.
 - Reason: implied limits directly shifted by interest rates.
 - Data: \(r_t \downarrow 100 \text{bp} \Rightarrow \text{extra 9.5\% 8Q asset growth for firms with IC covenants only.} \)

▶ **Main Finding #2**: Combination of IC + limit on stock of debt \(\Rightarrow \) state dependence.
 - Stronger transmission when rates are already high (and IC covenants are tighter).
 - Estimated share with IC as tightest covenant varied from 7\% to 60\% over 1997-2007 period.
 - Data: \(r_t \downarrow 100 \text{bp} \Rightarrow \text{extra 2.1\% 8Q asset growth for firms w/ these covs when } r_{t-1} 100 \text{bp higher.} \)
This Paper

▶ **Approach**: combine structural model with firm-level empirical evidence.

▶ **Stylized Facts**: Interest Coverage covenants extremely common (seen in 84% of firms in DealScan sample with covenants), maximum ratios appear stable over time.

▶ **Main Finding #1**: Interest Coverage covenants amplify interest rate transmission.
- Much stronger responses of debt, investment, output than under alternative covenant types.
- Reason: implied limits directly shifted by interest rates.
- Data: \(r_t \downarrow 100\text{bp} \implies \text{extra } 9.5\% \text{ 8Q asset growth for firms with IC covenants only.} \)

▶ **Main Finding #2**: Combination of IC + limit on stock of debt \(\implies \) state dependence.
- Stronger transmission when rates are already high (and IC covenants are tighter).
- Estimated share with IC as tightest covenant varied from 7% to 60% over 1997-2007 period.
- Data: \(r_t \downarrow 100\text{bp} \implies \text{extra } 2.1\% \text{ 8Q asset growth for firms w/ these covs when } r_{t-1} \text{ 100bp higher.} \)
Literature Review

 Here: Focus on macro dynamics, interest rate transmission.

 Here: Role of covenant structure in strength of transmission.

- **Covenants and Transmission:** Drechsel (2019), Lian Ma (2018).

 Here: Effect of interest coverage, state dependence through covenant interactions.
Background: Debt Covenants

- **Covenants:** provide conditions that, if violated by the firm, allow lender to demand accelerated repayment.
 - Often set thresholds for financial ratios \(\Rightarrow \) debt limits.
 - Ratios computed using total firm statistics, checked throughout life of loan.
 - Violation typically leads to (costly) renegotiation.

- **Purpose:** help firm commit not to overlever on other loans, provide “tripwires” for lender to reassess investment, seize control rights.

- Three main types:
 1. **Interest Coverage (IC):** restrict interest payments \(\leq \) fraction \(\theta^{IC} \) of earnings (EBITDA).
 2. **Debt/Earnings (DE):** restrict stock of debt \(\leq \) fraction \(\theta^{DE} \) of earnings (EBITDA).
 3. **Leverage:** restrict stock of debt \(\leq \) fraction \(\theta^{LEV} \) of firm book value.
Simple Example of Interest Rate Transmission

- Consider firm with no debt, EBITDA $10M, max ratio of interest to EBITDA of 40%.
 - Max interest payment is $4M.
 - At 6% interest rate, firm can borrow up to $4M / 0.06 = $66.7M without violating.
 - If rates fall to 5%, firm can now borrow $4M / 0.05 = $80M, an increase of 20%.

- This high sensitivity can hold even if firm uses only fixed-rate debt.
 - In this case, relevant interest rate is rate on new fixed rate debt.
 - Number of dollars of new debt firm can take on without violating has same high elasticity.

- When firm has existing floating-rate debt, capacity for new borrowing even more sensitive.
 - Share of interest cap consumed by existing debt also varies with rates.
Simple Example of Interest Rate Transmission

- Consider firm with no debt, EBITDA $10M, max ratio of interest to EBITDA of 40%.
 - Max interest payment is $4M.
 - At 6% interest rate, firm can borrow up to $4M / 0.06 = $66.7M without violating.
 - If rates fall to 5%, firm can now borrow $4M / 0.05 = $80M, an increase of 20%

- This high sensitivity can hold even if firm uses only fixed-rate debt.
 - In this case, relevant interest rate is rate on new fixed rate debt.
 - Number of dollars of new debt firm can take on without violating has same high elasticity.

- When firm has existing floating-rate debt, capacity for new borrowing even more sensitive.
 - Share of interest cap consumed by existing debt also varies with rates.
Simple Example of Interest Rate Transmission

- Consider firm with no debt, EBITDA $10M, max ratio of interest to EBITDA of 40%.
 - Max interest payment is $4M.
 - At 6% interest rate, firm can borrow up to $4M / 0.06 = $66.7M without violating.
 - If rates fall to 5%, firm can now borrow $4M / 0.05 = $80M, an increase of 20%.

- This high sensitivity can hold even if firm uses only fixed-rate debt.
 - In this case, relevant interest rate is rate on new fixed rate debt.
 - Number of dollars of new debt firm can take on without violating has same high elasticity.

- When firm has existing floating-rate debt, capacity for new borrowing even more sensitive.
 - Share of interest cap consumed by existing debt also varies with rates.
Covenant Prevalence by Type

- Plot: share with each covenant type for firms with at least one DealScan covenant.
- Share with Interest Coverage covenant high and stable over time.

Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.
Covenant Ratios Over Time

- Complication: covenant limits are endogenously set.
 - Do lenders simply adjust thresholds when interest rates or earnings change?

(a) Interest/EBITDA Ratio
(b) Debt/EBITDA Ratio

Source: DealScan, Compustat. Limits for new loans are weighted by deal size.
Covenant Ratios Over Time

- Below: initial covenant ratios at origination in DealScan.
 - Average across loans, weighted by deal amount.

Source: DealScan, Compustat. Limits for new loans are weighted by deal size.
Covenant Ratios Over Time

▶ Compare to corresponding ratios for corporate nonfinancial sector.
 - Slightly noisy, but little comovement with underlying economic fundamentals.

(a) Interest/EBITDA Ratio
(b) Debt/EBITDA Ratio

Source: DealScan, NIPA, Flow of Funds. Limits for new loans are weighted by deal size.
Covenant Ratios Over Time

- Now look at all active covenants. Provide smooth and stable constraints over time.
 - Reasonable to consider thresholds fixed at business cycle frequency.

(a) Interest/EBITDA Ratio

(b) Debt/EBITDA Ratio

Source: DealScan, NIPA, Flow of Funds. Limits for new loans are weighted by deal size.
Model
Model Overview

- **Demographics and preferences**
 - Risk-neutral representative **saver** lends to firms and provides labor: \(u^S(C, N) = C - \eta N. \)
 - Representative **entrepreneur** owns firms and consumes dividends: \(u^E(D) = \log(D). \)
 - Interest rate variation \(\Rightarrow \) time varying discount factor (both agents):
 \[
 \log \beta^*_t = (1 - \rho_\beta) \log \bar{\beta} + \rho_\beta \beta_{t-1} + \epsilon_{\beta,t}.
 \]

- **Productive technology**:
 \(f(K_{t-1}, N_t) = Z_t K_{t-1}^\alpha N_t^\gamma \)
 - Diminishing returns \((\alpha + \gamma < 1) \Rightarrow \) markups.

- Representative firm owns capital and pays dividends to entrepreneur.
 - Borrows in risk-free floating rate debt at rate \(r_t \), interest is tax deductible (**tax shield**).
 - Concave entrepreneur utility \(\Rightarrow \) dividend smoothing motive (**financing frictions**).
 - Combined: pathway from debt limits \(\rightarrow \) debt \(\rightarrow \) investment.

- **Flexible prices and wages, monetary authority targets achieves inflation target.**
Model Overview

▶ Demographics and preferences

- Risk-neutral representative **saver** lends to firms and provides labor: \(u^S(C, N) = C - \eta N \).
- Representative **entrepreneur** owns firms and consumes dividends: \(u^E(D) = \log(D) \).
- Interest rate variation \(\Rightarrow \) time varying discount factor (both agents):
 \[
 \log \beta_t = (1 - \rho_\beta) \log \bar{\beta} + \rho_\beta \beta_{t-1} + \varepsilon_{\beta,t}.
 \]

▶ Productive technology:

\[
 f(K_{t-1}, N_t) = Z_t K_{t-1}^\alpha N_t^\gamma
 \]

- Diminishing returns \((\alpha + \gamma < 1) \Rightarrow \) markups.

▶ Representative firm owns capital and pays dividends to entrepreneur.

- Borrows in risk-free floating rate debt at rate \(r_t \), interest is tax deductible (**tax shield**).
- Concave entrepreneur utility \(\Rightarrow \) dividend smoothing motive (**financing frictions**).
- Combined: pathway from debt limits \(\rightarrow \) debt \(\rightarrow \) investment.

▶ Flexible prices and wages, monetary authority targets achieves inflation target.
Model Overview

- **Demographics and preferences**
 - Risk-neutral representative **saver** lends to firms and provides labor: \(u^S(C,N) = C - \eta N \).
 - Representative **entrepreneur** owns firms and consumes dividends: \(u^E(D) = \log(D) \).
 - Interest rate variation \(\Rightarrow \) time varying discount factor (both agents):
 \[
 \log \beta_t = (1 - \rho_\beta) \log \bar{\beta} + \rho_\beta \beta_{t-1} + \epsilon_{\beta,t}.
 \]

- **Productive technology:** \(f(K_{t-1}, N_t) = Z_t K_t^{\alpha} N_t^{\gamma} \)
 - Diminishing returns \((\alpha + \gamma < 1) \Rightarrow \) markups.

- **Representative firm owns capital and pays dividends to entrepreneur.**
 - Borrows in risk-free floating rate debt at rate \(r_t \), interest is tax deductible (**tax shield**).
 - Concave entrepreneur utility \(\Rightarrow \) dividend smoothing motive (**financing frictions**).
 - Combined: pathway from debt limits \(\rightarrow \) debt \(\rightarrow \) investment.

- **Flexible prices and wages, monetary authority targets achieves inflation target.**
Model Overview

- **Demographics and preferences**
 - Risk-neutral representative **saver** lends to firms and provides labor: \(u^S(C, N) = C - \eta N \).
 - Representative **entrepreneur** owns firms and consumes dividends: \(u^E(D) = \log(D) \).
 - Interest rate variation \(\implies \) time varying discount factor (both agents):
 \[
 \log \beta_t = (1 - \rho_\beta) \log \bar{\beta} + \rho_\beta \beta_{t-1} + \varepsilon_{\beta,t}.
 \]

- **Productive technology:**
 \[
 f(K_{t-1}, N_t) = Z_t K_t^\alpha N_t^\gamma
 \]
 - Diminishing returns \((\alpha + \gamma < 1) \implies \) markups.

- **Representative firm owns capital and pays dividends to entrepreneur.**
 - Borrows in risk-free floating rate debt at rate \(r_t \), interest is tax deductible (**tax shield**).
 - Concave entrepreneur utility \(\implies \) dividend smoothing motive (**financing frictions**).
 - Combined: pathway from debt limits \(\rightarrow \) debt \(\rightarrow \) investment.

- **Flexible prices and wages, monetary authority targets achieves inflation target.**
Representative Firm’s Problem

- Firm chooses dividends D_t, labor demand N_t, new debt B_t and the investment rate i_t to max

$$V^F(K_{t-1}, B_{t-1}) = D_t + E_t \left[\Lambda^E_{t+1} V^F(K_t, B_t) \right]$$

where Λ^E_{t+1} is the entrepreneur SDF, subject to the budget constraint

$$D_t = (1 - \tau) \left(f(K_{t-1}, N_t) - w_t N_t \right) + \tau \delta K_{t-1} - i_t K_{t-1}$$

- after-tax profit
- depreciation credit
- investment
- interest payment
- net principal

and the borrowing constraint (debt covenants).

Household’s Problem
Covenant Implementations

- Denote EBITDA by $X_t = f(K_{t-1}, N_t) - w_t N_t$.

- Covenant types (for simplicity, imposed as hard caps):

 1. **Interest Coverage**: $\bar{B}^{IC}_t = \frac{\theta^{IC} X_t}{r_t}$.
 2. **Debt/Earnings**: $\bar{B}^{DE}_t = \theta^{DE} X_t$.
 3. **Leverage**: $\bar{B}^{LEV}_t = \theta^{LEV} BV_{t-1} \simeq \theta^{LEV} K_{t-1}$.

- Only Interest Coverage **directly shifted** by interest rates.
 - Highly sensitive, semielasticity of \bar{B}^{IC} to rates ~ 16.

- Overall debt limit is smoothed to allow for e.g., annual financial statistics:

 $$B_t \leq \rho \bar{B}_t + (1 - \rho) \pi^{-1}_t B_{t-1}$$
Covenant Implementations

- Denote EBITDA by $X_t = f(K_{t-1}, N_t) - w_t N_t$.

- Covenant types (for simplicity, imposed as hard caps):
 1. Interest Coverage: $\bar{B}^{IC}_t = \frac{\theta^{IC} X_t}{r_t}$.
 2. Debt/Earnings: $\bar{B}^{DE}_t = \theta^{DE} X_t$.
 3. Leverage: $\bar{B}^{LEV}_t = \theta^{LEV} BV_{t-1} \approx \theta^{LEV} K_{t-1}$.

- Only Interest Coverage directly shifted by interest rates.
 - Highly sensitive, semielasticity of \bar{B}^{IC} to rates ~ 16.

- Overall debt limit is smoothed to allow for e.g., annual financial statistics:
 $$B_t \leq \rho \bar{B}_t + (1 - \rho) \pi_t^{-1} B_{t-1}$$
Covenant Implementations

- Denote EBITDA by $X_t = f(K_{t-1}, N_t) - w_t N_t$.

- Covenant types (for simplicity, imposed as hard caps):
 1. Interest Coverage: $\bar{B}^IC_t = \frac{\theta^{IC}X_t}{r_t}$.
 2. Debt/Earnings: $\bar{B}^{DE}_t = \theta^{DE}X_t$.
 3. Leverage: $\bar{B}^{LEV}_t = \theta^{LEV} BV_{t-1} \approx \theta^{LEV}K_{t-1}$.

- Only Interest Coverage directly shifted by interest rates.
 - Highly sensitive, semielasticity of \bar{B}^IC to rates ~ 16.

- Overall debt limit is smoothed to allow for e.g., annual financial statistics:
 $$B_t \leq \rho \bar{B}_t + (1 - \rho)\pi_t^{-1}B_{t-1}$$
Collateralizability

- Additional channel (beyond financial friction) linking covenants and investment.

- Optimality condition for investment:

 \[
 \Phi'(i_t) = \Omega_t + M_t E_t \left[\frac{\partial B_{t+1}}{\partial K_t} \right]
 \]

 - Marginal Cost
 - Value of CFs
 - Collateral Benefit

- Key object is **collateralizability** of investment: \(\partial B_{t+1} / \partial K_t \):

 \[
 \frac{\partial B_{t+1}^{IC}}{\partial K_t} = \frac{\theta^{IC} f_{K,t+1}}{r_{t+1}}, \quad \frac{\partial B_{t+1}^{DE}}{\partial K_t} = \theta^{DE} f_{K,t+1}, \quad \frac{\partial B_{t+1}^{LEV}}{\partial K_t} = \theta^{LEV}.
 \]

- All covenants are collateralizable, but only IC collateralizability varies with interest rate.
Data and Calibration

- **Data:** merged Dealscan (syndicated loan covenants) and Compustat (firm data).
 - Drop finance + real estate, public utilities, public administration, mining, construction.
 - Assume firm has covenant until loan matures or EBITDA becomes negative.

- **Restrict sample to firms with above-quarter-median assets and profit margin.**
 - These are the firms likely able to sustain earnings based covenants (Lian and Ma, 2018).
 - Comprises 29% of firms, but 67% of sales.
 - 60% of this sample has at least one active Dealscan covenant in a given quarter.

- **Calibration:**
 - Target debt limits $\theta^{IC}, \theta^{DE}, \theta^{LEV}$ to match observed debt/EBITDA ratios by type.
 - Set discount rate to target interest rate of 6.11% (248bp spread over T-Bill).
Firm Characteristics by Covenant

- Firms with covenants larger, more levered than firms without covenants/syndicated loans.

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>IC</th>
<th>DE</th>
<th>Lev</th>
<th>IC + DE</th>
<th>IC Only</th>
<th>DE Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>10.45</td>
<td>138.73</td>
<td>135.58</td>
<td>82.47</td>
<td>141.42</td>
<td>156.76</td>
<td>112.61</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.33</td>
<td>18.56</td>
<td>18.71</td>
<td>8.65</td>
<td>20.66</td>
<td>16.40</td>
<td>11.16</td>
</tr>
<tr>
<td>Assets</td>
<td>50.53</td>
<td>508.75</td>
<td>514.35</td>
<td>290.40</td>
<td>543.38</td>
<td>545.63</td>
<td>432.43</td>
</tr>
<tr>
<td>Debt</td>
<td>2.41</td>
<td>142.74</td>
<td>151.34</td>
<td>54.05</td>
<td>161.62</td>
<td>201.07</td>
<td>150.00</td>
</tr>
<tr>
<td>ST Debt</td>
<td>0.49</td>
<td>5.00</td>
<td>5.37</td>
<td>3.37</td>
<td>5.09</td>
<td>7.47</td>
<td>10.26</td>
</tr>
<tr>
<td>LT Debt</td>
<td>0.70</td>
<td>125.00</td>
<td>133.86</td>
<td>38.87</td>
<td>146.63</td>
<td>180.98</td>
<td>119.70</td>
</tr>
<tr>
<td>Cash</td>
<td>7.42</td>
<td>16.93</td>
<td>17.07</td>
<td>14.14</td>
<td>17.59</td>
<td>17.05</td>
<td>16.54</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.00</td>
<td>7.89</td>
<td>8.08</td>
<td>5.43</td>
<td>8.04</td>
<td>11.98</td>
<td>9.60</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.114</td>
<td>0.289</td>
<td>0.299</td>
<td>0.225</td>
<td>0.301</td>
<td>0.339</td>
<td>0.321</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.013</td>
<td>0.036</td>
<td>0.036</td>
<td>0.031</td>
<td>0.037</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.54</td>
<td>1.15</td>
<td>1.16</td>
<td>1.12</td>
<td>1.19</td>
<td>1.03</td>
<td>1.01</td>
</tr>
</tbody>
</table>

\[N\] 99,669 36,522 29,132 24,237 24,401 4,137 3,334

Source: Dealscan, Compustat. Additional Groupings
Firm Characteristics by Covenant

- Firms with IC + DE covs largely similar. Firms with Leverage covenants a bit smaller.

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>IC</th>
<th>DE</th>
<th>Lev</th>
<th>IC + DE</th>
<th>IC Only</th>
<th>DE Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>10.45</td>
<td>138.73</td>
<td>135.58</td>
<td>82.47</td>
<td>141.42</td>
<td>156.76</td>
<td>112.61</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.33</td>
<td>18.56</td>
<td>18.71</td>
<td>8.65</td>
<td>20.66</td>
<td>16.40</td>
<td>11.16</td>
</tr>
<tr>
<td>Assets</td>
<td>50.53</td>
<td>508.75</td>
<td>514.35</td>
<td>290.40</td>
<td>543.38</td>
<td>545.63</td>
<td>432.43</td>
</tr>
<tr>
<td>Debt</td>
<td>2.41</td>
<td>142.74</td>
<td>151.34</td>
<td>54.05</td>
<td>161.62</td>
<td>201.07</td>
<td>150.00</td>
</tr>
<tr>
<td>ST Debt</td>
<td>0.49</td>
<td>5.00</td>
<td>5.37</td>
<td>3.37</td>
<td>5.09</td>
<td>7.47</td>
<td>10.26</td>
</tr>
<tr>
<td>LT Debt</td>
<td>0.70</td>
<td>125.00</td>
<td>133.86</td>
<td>38.87</td>
<td>146.63</td>
<td>180.98</td>
<td>119.70</td>
</tr>
<tr>
<td>Cash</td>
<td>7.42</td>
<td>16.93</td>
<td>17.07</td>
<td>14.14</td>
<td>17.59</td>
<td>17.05</td>
<td>16.54</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.00</td>
<td>7.89</td>
<td>8.08</td>
<td>5.43</td>
<td>8.04</td>
<td>11.98</td>
<td>9.60</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.114</td>
<td>0.289</td>
<td>0.299</td>
<td>0.225</td>
<td>0.301</td>
<td>0.339</td>
<td>0.321</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.013</td>
<td>0.036</td>
<td>0.036</td>
<td>0.031</td>
<td>0.037</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.54</td>
<td>1.15</td>
<td>1.16</td>
<td>1.12</td>
<td>1.19</td>
<td>1.03</td>
<td>1.01</td>
</tr>
<tr>
<td>N</td>
<td>99,669</td>
<td>36,522</td>
<td>29,132</td>
<td>24,237</td>
<td>24,401</td>
<td>4,137</td>
<td>3,334</td>
</tr>
</tbody>
</table>

Source: Dealscan, Compustat.

Additional Groupings

Daniel L. Greenwald

The Interest Coverage Channel

NBER SI, July 2019 17 / 33
Differences much more muted in selected (high-asset, high-margin) sample.

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>IC</th>
<th>DE</th>
<th>Lev</th>
<th>IC + DE</th>
<th>IC Only</th>
<th>DE Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>172.37</td>
<td>196.75</td>
<td>182.88</td>
<td>225.76</td>
<td>180.72</td>
<td>243.32</td>
<td>210.25</td>
</tr>
<tr>
<td>EBITDA</td>
<td>24.42</td>
<td>28.08</td>
<td>27.35</td>
<td>28.14</td>
<td>27.80</td>
<td>26.59</td>
<td>23.79</td>
</tr>
<tr>
<td>Assets</td>
<td>574.59</td>
<td>691.63</td>
<td>668.32</td>
<td>699.31</td>
<td>668.53</td>
<td>796.01</td>
<td>714.71</td>
</tr>
<tr>
<td>Debt</td>
<td>94.85</td>
<td>215.66</td>
<td>215.93</td>
<td>163.44</td>
<td>214.71</td>
<td>338.10</td>
<td>252.44</td>
</tr>
<tr>
<td>ST Debt</td>
<td>5.50</td>
<td>7.10</td>
<td>7.17</td>
<td>8.03</td>
<td>6.43</td>
<td>12.00</td>
<td>16.17</td>
</tr>
<tr>
<td>LT Debt</td>
<td>70.03</td>
<td>196.11</td>
<td>194.93</td>
<td>141.00</td>
<td>196.60</td>
<td>298.70</td>
<td>201.31</td>
</tr>
<tr>
<td>Cash</td>
<td>61.90</td>
<td>25.52</td>
<td>24.07</td>
<td>30.83</td>
<td>23.71</td>
<td>28.73</td>
<td>28.02</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>3.61</td>
<td>7.77</td>
<td>7.96</td>
<td>5.97</td>
<td>8.01</td>
<td>11.16</td>
<td>8.42</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.175</td>
<td>0.307</td>
<td>0.315</td>
<td>0.243</td>
<td>0.320</td>
<td>0.373</td>
<td>0.310</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.043</td>
<td>0.040</td>
<td>0.040</td>
<td>0.039</td>
<td>0.040</td>
<td>0.034</td>
<td>0.035</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.61</td>
<td>1.27</td>
<td>1.28</td>
<td>1.24</td>
<td>1.30</td>
<td>1.15</td>
<td>1.19</td>
</tr>
<tr>
<td>N</td>
<td>18,131</td>
<td>20,881</td>
<td>17,271</td>
<td>10,339</td>
<td>15,143</td>
<td>2,007</td>
<td>1,582</td>
</tr>
</tbody>
</table>

Source: Dealscan, Compustat.
Calibration (Quarterly)

- Calibrate debt thresholds to match median debt/EBITDA ratios.
- Low calibrated debt limits equivalent to constant precautionary buffer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Name</th>
<th>Value</th>
<th>Internal</th>
<th>Target/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor mean</td>
<td>$\bar{\beta}$</td>
<td>0.990</td>
<td>N</td>
<td>Typical Dealscan rate</td>
</tr>
<tr>
<td>Discount factor persistence</td>
<td>ρ_β</td>
<td>0.969</td>
<td>N</td>
<td>Autocorr. of 3-Mo T-Bill</td>
</tr>
<tr>
<td>Tax rate</td>
<td>τ</td>
<td>0.350</td>
<td>N</td>
<td>Corporate tax rate</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>$\bar{\pi}$</td>
<td>1.005</td>
<td>N</td>
<td>2.03% inflation</td>
</tr>
<tr>
<td>Capital share</td>
<td>α</td>
<td>0.360</td>
<td>N</td>
<td>Standard</td>
</tr>
<tr>
<td>Labor Share</td>
<td>γ</td>
<td>0.630</td>
<td>N</td>
<td>1% Markup</td>
</tr>
<tr>
<td>Depreciation</td>
<td>δ</td>
<td>0.025</td>
<td>N</td>
<td>Standard</td>
</tr>
<tr>
<td>Borrowing limit smoothing</td>
<td>ρ_B</td>
<td>0.250</td>
<td>N</td>
<td>Annualized ratios</td>
</tr>
<tr>
<td>Max interest coverage ratio</td>
<td>θ^{IC}</td>
<td>0.169</td>
<td>Y</td>
<td>Debt/EBITDA = 11.16</td>
</tr>
<tr>
<td>Max debt-to-earnings ratio</td>
<td>θ^{DE}</td>
<td>8.548</td>
<td>Y</td>
<td>Debt/EBITDA = 8.42</td>
</tr>
<tr>
<td>Max Leverage ratio</td>
<td>θ^{LEV}</td>
<td>0.227</td>
<td>Y</td>
<td>Debt/EBITDA = 5.42</td>
</tr>
</tbody>
</table>
Results
Comparison: Covenant Types

- **Main Result #1**: Interest Coverage covenants amplify interest rate transmission.
- Compare linearized IRF to ↓ 100bp disc. rate shock to firms each with single covenant.
Comparison: Covenant Types

- Additional 8Q growth of debt (20.2%), capital (9.4%), EBITDA (9.1%) relative to DE econ.
- IC economy: large relaxation of debt limits \implies capital, EBITDA growth \implies feedback.

![IRF to Discount Rate](image1.png)

- Interest Cov.
- Debt/EBITDA
- Leverage

![IRF to Discount Rate](image2.png)

- Interest Cov.
- Debt/EBITDA
- Leverage

![IRF to Discount Rate](image3.png)

- Interest Cov.
- Debt/EBITDA
- Leverage
Comparison: Covenant Types

- Debt limit jumps on impact in IC economy, then drifts up due to higher EBITDA.
- Collateralizability effect \implies extra 8 cents debt per dollar of investment.
Comparison: Covenant Types, Inflation Shock

- Note: constraint is on _nominal_ interest payments. Not inflation neutral!

- Shock log π_t 100bp ↓ with same persistence.
 - Similar 8Q growth of debt (20.1%), assets (9.0%) for IC-constrained firms as for real rate shock.
Empirical Approach

▶ Main specification:

\[y_{i,t+h} = \alpha_i + \phi_{ind,t} + \sum_{\text{cov}} \mathbb{I}_{\text{cov},t} \cdot (\beta_{0,\text{cov}} + \beta_{1,\text{cov}} \Delta r_t) + \gamma' X_{i,t-1} + \delta' (X_{i,t-1} \cdot \Delta r_t) + \epsilon_{i,t} \]

where \(r_t \) is 3-Month T-Bill, outcome \(y_{i,t+h} \) and controls \(X_{i,t-1} \) are scaled by \(\text{Asset}_{i,t-1} \).

▶ Challenge #1: Interest rate changes are not exogenous (identified MP shocks too weak).

- Industry-time (SIC-2) effects attempt to control for endogeneity of interest rate.

▶ Challenge #2: Covenants (and syndicated loans) are not randomly assigned.

- Interact \(\Delta r_t \) and controls
- Directly compare firms with IC and DE covenants.
Empirical Evidence: Covenant Types

- Plots: difference in response to $r \downarrow 100\text{bp}$ between IC-Only, DE-Only: $-(\beta_{1,IC} - \beta_{1,DE})$.
- IC-Only show additional 8Q growth in debt (5.2%), assets (9.5%) as share of Assets_{t-1}.

Source: DealScan, Compustat. The sample spans 1997Q1 to 2007Q4. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels.
Empirical Evidence: Covenant Types

- Are these numbers reasonable? Compare to model prediction.
- Close to model response of assets (9.7%), smaller than prediction for debt (9.6%).

Source: DealScan, Compustat. The sample spans 1997Q1 to 2007Q4. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels.
Multiple Covenants

- Previous analysis considers economies with a single covenant at a time.
- Data: most firms with any covenants have both Interest Coverage + Debt/Earnings.

Source: DealScan. Shares are equally weighted among DealScan firms with at least one covenant.
Implementation: Interest Coverage + Debt/Earnings Covenant

- Assume common Debt/Earnings limit $\bar{\theta}^{DE}$, but each firm i faces idiosyncratic IC limit:

$$\theta_{i,t}^{IC} = e_{i,t} \bar{\theta}^{IC}, \quad \log e_{i,t} \iid N \left(-\frac{1}{2} \sigma_e^2, \sigma_e^2 \right)$$

- Calibrate σ_e to match IQR of $\log(\theta_{i,t}^{DE} / \theta_{i,t}^{IC})$ in DealScan data. ($\sigma_e = 0.301$).

- Timing:
 - Firm re-draws $e_{i,t}$ each time it takes on new debt.
 - Must choose capital before it knows its draw of $e_{i,t}$.

- Overall debt limit: $\bar{B}_{i,t} = \min \left(\bar{B}_{i,t}^{IC}, \bar{B}_{i,t}^{DE} \right)$.

- Whether Interest Coverage or Debt/Earnings is tighter uniquely determined by rates.
 - In the model, Interest Coverage binds if and only if $r_t \geq r_{i,t}^* \equiv \theta_{i,t}^{IC} / \bar{\theta}^{DE}$
Measuring Covenant Tightness

- What about in the data? Firms keep excess debt capacity to precautionarily avoid violation.

- Compute closest covenant adjusting for differential violation risk following Murfin (2012).

Source: DealScan, Compustat, equally weighted.
Measuring Covenant Tightness

- Apply to Dealscan data \(\Rightarrow\) large variation in implied fraction with IC as tightest covenant.

 - Range from high of 58.9% in 2007 Q1 to low of 6.8% in 2003 Q2.

Source: DealScan, Compustat, equally weighted.
Measuring Covenant Tightness

- Average share with IC tighter: 32.9%.
 - Calibrate model to match at steady state.

Source: DealScan, Compustat, equally weighted.
State Dependence: DE + IC Covenants

- **Main Result #2:** Combining IC + DE covs \implies state dependent interest rate transmission.

- Alternative regimes with SS interest (discount) rate high (+250bp) vs. low (-250bp).

Additional Variables
The Impact of Interest on Debt, Capital, and EBITDA under High and Low Rates.
State Dependence: DE + IC Covenants

- Stronger transmission when rates are high (73.4% IC binds) vs. low (1.3% IC binds).
- Additional 8Q growth in debt (7.9%), capital (2.1%) in high vs. low rate regime.

Additional Variables
State Dependence: DE + IC Covenants

- Note: larger response under high rates despite smaller proportional change.
- Change in frac. IC-constrained (extensive margin) overwhelms smaller change in debt limits.
Empirics: State Dependence

$y_{i,t+h} = \alpha_i + \phi_{ind,t} + \sum_{s \in \{0,1\}} \left(I_0 + I_1 r_{t-1} \right) \left\{ \sum_{cov} \left(\beta_{0,cov}^s + \beta_{1,cov}^s \Delta r_t \right) + \gamma'_s X_{t-1} + \delta'_s (X_{t-1} \cdot \Delta r_t) \right\} + \epsilon_{i,t}$

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.

By Regime

Daniel L. Greenwald
The Interest Coverage Channel
NBER SI, July 2019 31 / 33
Empirics: State Dependence

- Focus on interaction between r_{t-1}, having both IC + DE covenants, Δr_t.
- Increased 8Q growth in debt (1.5%), assets (2.1%) for every 1ppt increase in r_{t-1}.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence

- Focus on interaction between r_{t-1}, having both IC + DE covenants, Δr_t.

- Increased 8Q growth in debt (1.5%), assets (2.1%) for every 1ppt increase in r_{t-1}.

- Point estimates $\sim 3x$ larger than model predictions for debt (0.6%), assets (0.6%).

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence

- What could explain stronger response in the data?
 - Spreads could move more than 1-for-1 with interest rate (e.g., “performance pricing”).
 - Interest rate volatility higher when rates are high (e.g., Cox Ingersoll Ross, 1985).

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence

- State dependence unique to firms with debt covenants, as predicted.
- Below: no state dependent response for firms with DE covenant only.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Conclusion

- Novel model capturing key facts about corporate debt limits.
 - Interest Coverage limits are extremely common, caps stable over time.
 - Typical firm has multiple covenants.
 - Large implied variation in share with IC as tightest covenant.

- Main results:
 - Interest Coverage covenants amplify interest rate transmission (interest coverage channel).
 - State dependent transmission: stronger when rates are high.

- Looking ahead:
 - In progress: aggregating to a macro impact.
 - Fixed rate debt \(\Rightarrow\) weaker but more path dependent transmission.
Empirics: State Dependence

▶ Lower estimated state dependence for IC-Only firms, as predicted.

▶ Some positive effect unsurprising as constraints are tighter when rates high (unlike for DE).

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence, High vs. Low Rate Regimes

Augment original regression so coefficients depend on interest rate regime (cutoff = 3.56%):

\[
y_{i,t+h} = \alpha_i + \phi_{ind,t} + \sum_{s \in \{hi, low\}} \mathbb{I}_{s,t} \left\{ \sum_{cov} \mathbb{I}_{cov,t} \cdot \left(\beta_{0,cov}^s + \beta_{1,cov}^s \Delta r_t \right) + \gamma_{s}^t X_{t-1} + \delta_{s}^t (X_{t-1} \cdot \Delta r_t) \right\} + \epsilon_{i,t}
\]
Empirics: State Dependence, High vs. Low Rate Regimes

▶ Larger response when rates are high vs. low.

▶ Again, estimates are substantially larger than predicted.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence, High vs. Low Rate Regimes

- Split sample by whether rates are high or low (cutoff: T-Bill rate = 3.56%).
- Both firms borrow more than DE-Only firms when rates high, similar when rates low.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Empirics: State Dependence, High vs. Low Rate Regimes

- Split sample by whether rates are high or low (cutoff: T-Bill rate = 3.56%).
- Reverse pattern for Both vs. IC-Only, matching theory.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Measuring Covenant Tightness: Details

- What is the probability that a firm violates its covenant over the next 4Q?

- Firm with DE covenant violates if 4Q EBITDA growth sufficiently low:

 \[\Delta_4 X_{t+4}^{4Q} < \log B_t - \log \theta^{DE} - \log X_t^{4Q} \]

- Firm with IC covenant violates if 4Q growth in EBITDA/r sufficiently low:

 \[\Delta_4 \left(\log X_{t+4}^{4Q} - \log r_{t+4}^{4Q} \right) < \log B_t - \log \theta^{IC} - \log X_t^{4Q} + \log r_t^{4Q} \]

- Assume that these growth rates are Gaussian. Tighter = more likely to violate.

- Take robust estimate of dispersion (matching IQR) to deal with extreme values. Estimated distributions show additional risk from IC covenants:

 \[\sigma_X = 0.189 \quad \sigma_{rX} = 0.291. \]
What Determines Covenant Tightness?

- Previous conjecture explains why firm might have both covenants, but not dispersion in relative tightness.

- Below: θ^{IC} and θ^{DE} ratios on existing loans, by log assets (normalized by quarter median).

![Graph of IC Threshold vs Log Assets (Normalized)]

![Graph of DE Threshold vs Log Assets (Normalized)]
What Determines Covenant Tightness?

- Larger firms tend to have looser DE thresholds, but **tighter** IC thresholds.
 - Explained by higher spreads on smaller firms?
What Determines Covenant Tightness?

- Sorting by credit rating even more confusing (both looser for lower rating).
 - Related to selection into covenants for investment-grade firms in the first place?
What Determines Covenant Tightness?

- Comparing limits: IC relatively tighter for large firms (effect of rating less clear).
 - Does this matter for transmission?

![Graph showing the relationship between Log(IC/DE) and Log Assets (Normalized).]

![Graph showing the relationship between Log(IC/DE) and Credit Rating (Lower = Safer).]
Empirics: State Dependence

- Alternative measure of state dependence: diff-in-diff of Both relative to DE-Only
- Noisier, but still shows excess state dependence for Both firms.

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Monetary Policy Shocks

- Replace Δr_t with identified MP shocks following Gertler and Karadi (2012)

Source: DealScan, Compustat. Error bars denote 95% confidence interval. Standard errors are double clustered at the firm and industry-time levels. The sample spans 1997Q1 to 2007Q4.
Representative Household’s Problem

- Rep. household chooses consumption C_t, labor supply N_t and new debt B_t to maximize

$$V^S(B_{t-1}) = u(C_t) - v(N_t) + \beta E_t[V^S(B_t)]$$

subject to the budget constraint

$$C_t = (1 - \tau)w_tN_t + r_t\pi_t^{-1}B_{t-1} - (B^*_t - \pi_t^{-1}B_{t-1}) + T^S_t$$

 labor income interest payment net debt issuance transfer
Firm Characteristics by Covenant: Additional Groupings

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>Any</th>
<th>Non-IC</th>
<th>IC + Lev</th>
<th>DE + Lev</th>
<th>Lev Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>10.45</td>
<td>119.89</td>
<td>58.41</td>
<td>117.11</td>
<td>110.28</td>
<td>36.54</td>
</tr>
<tr>
<td>EBITDA</td>
<td>0.33</td>
<td>14.76</td>
<td>4.57</td>
<td>13.48</td>
<td>12.47</td>
<td>1.69</td>
</tr>
<tr>
<td>Assets</td>
<td>50.53</td>
<td>434.37</td>
<td>215.05</td>
<td>381.46</td>
<td>367.54</td>
<td>142.35</td>
</tr>
<tr>
<td>PPE</td>
<td>6.26</td>
<td>97.15</td>
<td>43.14</td>
<td>88.15</td>
<td>81.50</td>
<td>25.24</td>
</tr>
<tr>
<td>Debt</td>
<td>2.41</td>
<td>116.23</td>
<td>41.72</td>
<td>76.60</td>
<td>69.38</td>
<td>21.00</td>
</tr>
<tr>
<td>ST Debt</td>
<td>0.49</td>
<td>4.86</td>
<td>4.43</td>
<td>3.53</td>
<td>3.31</td>
<td>3.00</td>
</tr>
<tr>
<td>LT Debt</td>
<td>0.70</td>
<td>98.11</td>
<td>22.64</td>
<td>62.88</td>
<td>58.75</td>
<td>9.37</td>
</tr>
<tr>
<td>Cash</td>
<td>7.42</td>
<td>16.53</td>
<td>15.30</td>
<td>13.80</td>
<td>12.60</td>
<td>15.91</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>0.00</td>
<td>7.33</td>
<td>5.29</td>
<td>6.15</td>
<td>6.35</td>
<td>3.06</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.114</td>
<td>0.275</td>
<td>0.230</td>
<td>0.238</td>
<td>0.240</td>
<td>0.200</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.013</td>
<td>0.033</td>
<td>0.024</td>
<td>0.035</td>
<td>0.036</td>
<td>0.019</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.54</td>
<td>1.13</td>
<td>1.08</td>
<td>1.13</td>
<td>1.14</td>
<td>1.12</td>
</tr>
<tr>
<td>N</td>
<td>99,669</td>
<td>49,003</td>
<td>12,481</td>
<td>15,090</td>
<td>8,503</td>
<td>7,750</td>
</tr>
</tbody>
</table>

Source: Dealscan, Compustat.
Firm Characteristics by Covenant: Selected Sample

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>Any</th>
<th>Non-IC</th>
<th>IC + Lev</th>
<th>DE + Lev</th>
<th>Lev Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>172.37</td>
<td>204.47</td>
<td>270.93</td>
<td>208.60</td>
<td>172.04</td>
<td>412.45</td>
</tr>
<tr>
<td>EBITDA</td>
<td>24.42</td>
<td>28.45</td>
<td>32.14</td>
<td>26.00</td>
<td>22.78</td>
<td>53.11</td>
</tr>
<tr>
<td>Assets</td>
<td>574.59</td>
<td>708.40</td>
<td>864.68</td>
<td>639.57</td>
<td>573.83</td>
<td>1499.83</td>
</tr>
<tr>
<td>PPE</td>
<td>139.39</td>
<td>194.98</td>
<td>272.32</td>
<td>177.27</td>
<td>140.55</td>
<td>417.30</td>
</tr>
<tr>
<td>Debt</td>
<td>94.85</td>
<td>219.90</td>
<td>253.19</td>
<td>149.10</td>
<td>132.81</td>
<td>287.50</td>
</tr>
<tr>
<td>ST Debt</td>
<td>5.50</td>
<td>8.20</td>
<td>19.56</td>
<td>6.04</td>
<td>5.21</td>
<td>30.00</td>
</tr>
<tr>
<td>LT Debt</td>
<td>70.03</td>
<td>196.90</td>
<td>200.00</td>
<td>130.73</td>
<td>118.26</td>
<td>230.00</td>
</tr>
<tr>
<td>Cash</td>
<td>61.90</td>
<td>27.40</td>
<td>39.78</td>
<td>25.92</td>
<td>20.68</td>
<td>63.00</td>
</tr>
<tr>
<td>Debt/EBITDA</td>
<td>3.61</td>
<td>7.54</td>
<td>6.35</td>
<td>6.10</td>
<td>6.55</td>
<td>5.42</td>
</tr>
<tr>
<td>Debt/Assets</td>
<td>0.175</td>
<td>0.298</td>
<td>0.253</td>
<td>0.248</td>
<td>0.260</td>
<td>0.230</td>
</tr>
<tr>
<td>EBITDA/Assets</td>
<td>0.043</td>
<td>0.039</td>
<td>0.038</td>
<td>0.039</td>
<td>0.039</td>
<td>0.041</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.61</td>
<td>1.26</td>
<td>1.23</td>
<td>1.24</td>
<td>1.23</td>
<td>1.29</td>
</tr>
<tr>
<td>N</td>
<td>18,131</td>
<td>24,963</td>
<td>4,082</td>
<td>7,839</td>
<td>4,654</td>
<td>1,954</td>
</tr>
</tbody>
</table>

Source: Dealscan, Compustat.