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Dynamic Programming

> Let x; be endogenous states, z; be exogenous states, and y; be controls.
> Basic problem:

V(xt,zt) = max  F(xt,yt,2t) + BEt [V(Xt 1, Zt11)]
V€l (xt,2t)

Xtp1 = g(Xt, Yt. 2t)
Ztyq1 = h(zt, €t41)

» Example: consumption-savings problem.
V(Gt, Wt) = )r(n>aé u (at 4wl — St) + BEt [V(Gt+1, Wt+1)]
t—

At+1 = Rst

logWtiq = (1—p) log W + p log Wt + €¢41, etrq ~ N(0,0?)
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Dynamic Programming: Discrete Models
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Discrete Dynamic Programming

> Very simple and robust approach: assume x; € X = (Xq,...,Xy), 2zt € Z = (4, ..., Zk)-

- Easy to estimate time series using Hamilton filter (see Farmer, 2017).

» Basic problem reframed:

V(Xt,Zt) = max F(Xt,Zt,Xt+1) + ‘3 Z P(Zt+1 |Zt)V(Xt+1,Zt+1)

Xe1 €T (Xt,2t) Zt

> Effects of discretization:
- Choose x¢. 4 directly instead of y; (can't leave grid).

- Expectation is matrix multiplication.

» Notation: X(a, b; ¢) is a matrix where the columns stack over a and b (i.e.,
(a4, bq), (aq1,b2), ..., (az, by),...) and the rows stack over c.
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Discrete Dynamic Programming

> Step 1: given iteration k guess Vy,, optimize decision.

> Define
Q(Xt, 2t; Xt-+1) = F(Xt, Zt; Xt-1) +,3(P(Zt;2t+1) ® 1y )V(Xt+1;zt+1)/
S— —— N ——
NKxN KxK N1 KxN
if Xt+1 € T(Xt, 2¢), and —co otherwise.
> Reminder: ® is the Kronecker product, so that
AuB -+ AiB
ARB=| i .
AmB -+ ApnB

> Define x{_, (X, zt) = arg max,,, Q(Xt, Zt; Xt 11). This is the column-wise max.
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Discrete Dynamic Programming

> Step 2: given decisions, update V (“Howard Improvement”).

- Can update V., by plugging in x{, , and V}, on the RHS, then iterate, but this is slow.
- Better approach: solve for exact value function under policy x{ ;.

» Define:

A(Xt, Zt, Xt 11, Zt 1) = P(Zt11)2t) - 1 {Xt31 = X{ 11 (Xe, 2¢) }
F*(Xt,2t) = F(Xt, Zt, X{11)

» Then we have:

V(xt,z¢) = F*(xt, 2t) +BA(Xt, Zt; Xt 11, Zt11) V(X 11, Zt11)

N———’ ———v
NKx1 NKx1 NKxNK NK %1

which implies the exact solution V,_, = (I — BA) "F*.
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Discrete Dynamic Programming

v

Iterate on Steps 1and 2 until x;, , stops changing. Then you are done!

v

Stationary distribution: eigenvector of A’ associated with unit eigenvalue.

- Similarly, stationary dist. of exogenous states is eigenvector of P’ with unit eigenvalue.

v

Note: A will contain many zeros, often better to use sparse matrices.

v

For P, use Rouwenhorst (1995) method to approximate Gaussian AR(1) processes.

- Other approximations struggle as p — 1.

- Better to read treatment in Kopecky and Suen, RED 2010.

v

Suffers from curse of dimensionality, but GPUs can provide huge speedup!
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Special Case: Exogenous Asset Pricing

» Assume that all states are exogenous.
» Combine E¢[M¢11Rt14] = 1and definition Reyq = (Pt41 + Dt+41) /Pt to obtain

D(z
PD(zt) = E¢ {M(zt,zt+1) (PD(z¢11) +1) (Zt41) } |
D(z)
» Then we can solve for PD exactly with a single linear inversion:

A(zt, 2t41) = P(2t, Zt44)M(2t, Zt 1) D[()Z(tZJtr;)

PD(z;) = A(zt; Z¢44) (PD(zt+1) + 1K)
PD = (I —A) "k
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Dynamic Programming: Continuous Models
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Generic Optimality Conditions

» As long as the problem is well-behaved (uniquely determined by FOCs), it is usually better
to solve the FOCs than to directly use the value function.

> Typical approach is to just start taking derivatives, but can actually be more systematic.

> Let's add some additional structure (slight change of notation):

- Let ¢t be consumption, and y; be all other controls.
- Let ¥ (xt, ct, Yt, zt) > O be the budget constraint, and T'(x¢, ¢t, yt, zt) > O be all other constraints.
- Assume the budget constraint is written ¢; < --- so that 0%¥;/d¢ct = —1.

- Let F(xt,yt,zt) = U(Xt. CtuYtth)'
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Generic Optimality Conditions

» Generic optimality condition for y;:

aut> - aut a‘Ijt art aXt+1
0= | = —+ = -+ — + Q
(aCt oyt It Moy "oy
~ —— ———
utility resources  constraints  continuation

> All quantities expressed in units of consumption.

» Marginal continuation values Q); defined by fixed point

(aut+1)_1 JUt 4 i 0¥t 1 n Il 44 1) aXt+2] }

Qr=E <M
' t{ o OCt 4 OXt+1  OXtt e Yt M OXt-41

where M., is the SDF. Note: works for EZW preferences.
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Example: Kaltenbrunner and Lochstoer (2010)

1—

1
o
> Preferences: U; = <(1 —,B)C1 4 BE; [ 11 ] H)

=

> Budget constraint: Gt < Z;“K{ — i¢K.
» Endogenous state LOM:  Kiiq = (1—0)Kt + ¢ (i) Kt
> Exogenous state LOM: logZti1 = ¢logZt + et4n.
» Optimality conditions:
0= —1+¢ (it)
Q¢ = Et {Mt+1 " (it+1 )1‘“ — i + ((1 —6) + ¢(it+1>)QK,t+1] }
t+1
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Example: Kaltenbrunner and Lochstoer (2010)

L
-

> Preferences: ((1 —B)C P+ ﬁEt t+1 )
> Budget constraint: Gt < Z; “K{ — i¢K.

» Endogenous state LOM:  Kiiq = (1—0)Kt + ¢ (i) Kt
> Exogenous state LOM: logZtq = ¢ logZt + €t41.

» Optimality conditions:

1= Et [Mt11Rt 4]
®(Zeyr/Kea)™ =it + ((1 —0) + ¢(it+1))Qt+1
qt

Rt+4

qe = ¢’ (ir) ™"
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Complementary Slackness
> Complementary slackness: given constraint I't and multiplier p:
ytI"t =0, Ut > 0, I+ > o.

» Example: lower bound y; > o.

- Challenge: kinked, nondifferentiable policy function.

» Auxiliary variable (Garcia and Zangwill) approach:

- Define policy function as auxiliary variable at.
- Define y; = max(at, 0)F for k > 1.

- Define p¢ = max(—ay, 0)F for k > 1.

> Delivers continuously differentiable policy function.
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Time Iteration

» Assume equilibrium conditions follow f (x,y,z, £(x,y,z)) = 0, where
Et = Et [q(Xt+1, Vi1, Zt41)]

» Choose grid {X;,z;} and basis functions ¢ (s, z).

> Let by, be the coefficients from the previous (kth) iteration.

> Key idea: use previous guess by, to form expectations &:

Yer1 = biptp(Xe 11, Zt14)

&t =) wiq(Xt11, Vi1, 2t 1)
i

where wj; are quadrature weights, then solve for y; given &;.
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Time Iteration on Controls

> Time iteration on controls: for each (X;, z;), choose y; so f (X;,v;, Z;, £(X;, Z;; br)) = 0, with

E(Xi, zibe) = ) _wjq (Xt—H: bfelP(Xt+1th+1)th+1)
j

> Recipe: given y;, quadrature node g, compute
Xe+1 = g(X;, Vi, Zj)
Zt41 = h(Z,-, (‘_31)
» Use nonlinear equation solver. Gradient:

df _of L o, [aXt+1< 99 99 aYI+1>:|

dy; oyt a_5tt oyt \OXty1  OYti1 OXtiq

where 9yt 1/0Xt 11 = by, (99 (Xt11, Zt11) /0Kt 1)
> Once solutions {y;} have been found, choose by, so thaty; = b} . ,¢(X; 2;) Vi, repeat.
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Time Iteration
> [terating on controls is straightforward but not very efficient.

- Additional challenge: y;1 may not be non-smooth in states.
> Alternative: time iteration on coefficients. Solve directly for b that satisfies
f (x,-, b'y(x;.2).2; 5) —o.
i.e., compute y; = b'y(x;, 2;) and proceed as before.

> Use nonlinear equation solver with gradient

af:{af n fE [aXt+1< aq n aq a)&mﬂ}ay
ob dytr 9t ayt \OXtr1  OYir1 OXeyq

~

ob
where dy;/0b = ¢(x¢, zt)'.

> Update by, = b and repeat until ||by, — bg|| is smaller than some threshold.
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Direct Solution

> Most efficient (but least robust): solve for b directly.
> Apply same solution to both sides:
0= f(xt, b'(xt, zt), e, St)
& =E [q (Xt+1, b’¢(xt+1,2t+1)th+1)] :

» Run nonlinear equation solver with gradient

of _ af%+ Ff [( aq n Jq aYt+1> i1 0¥t 99 Yt

ab oyt ob ' 9& [\ OXts1  OYti10Xerr) Oyr b dyeq b

> Can start with time iteration and then switch to direct solution to get best of both worlds.
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Special Case: Exogenous Asset Pricing

» Return to special case

PD(z) = E¢ {M(Ztyztm) (PD(2t+1) +1) %} '

> Apply guess PD(z¢) = ¢(zt)’b, and use quadrature scheme (wj, §j):

, B D(Zt,g') _
¥(z:)'b = }Zw]-M(zt, &) (th)’> (l/J(Zt, &)'b+ 1)

with slight abuse of notation to substitute (z, ;) for z¢4.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 18/ 11



Special Case: Exogenous Asset Pricing

» |f we now define

then we obtain

¥Yb=Ab+c
b=(Y-A)"c

» Another one-step linear solution!
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Additional Refinements

»> Precomputation:
- Can save time by pre-computing y(X;, Z;).
- Note that for a given grid {z;} and nodes {;}, end up with the same grid over z,.
= I P(Xtsq, Zt11) = Px(Xt41)Pz(Ze+1), then we can also precompute ¢ (2t14(Z;, §)).

> Adaptive domain:

- Approximations work better when variables are not highly correlated.

- Better: use principal components as states.

Do SVD to obtain X = (x4,...,x7)" = USV, then the PCs are X = XV.

- Recover X using X = XV'.
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Adaptive Domain: Illustration

11+
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Simulated series
Rectangular 1: original coordinates ||
Rectangular 2: principal components

Source: Judd, Maliar, Maliar, Valero (2013).

1.1 1.2 1.3
Capital, k;

1.4

1.5 1.6 1.7

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024

21/



Special Case: Endogenous Grid Method

> Typically choose grid, then solve so optimality conditions hold on it.

- But sometimes can skip optimization step by exploiting properties of equilibrium condition.

- Endogenous grid method of Carroll (2006).

> Example: consider a life-cycle Bewley model with Euler equation

ct(at, yt) ™7 = BEt [Cty1(Atia, Yei1) 7]

where t is age, a is assets, and y is income, subject to the budget constraint
Ct+ R = ae + Yt

» Given (at, y;), we cannot solve for ¢; (equivalently, a;.+) in closed form.
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Special Case: Endogenous Grid Method

» But what if we somehow knew next period’s value of a1 and next period’s policy function
Ct+1? Then from the Euler equation we would know

= {.BEt [Ct+1(at+1th+1)_7} }_1/7
and from the budget constraint we would know
a; = ¢ + R a1 — yr.
» This means that if we start at (a}, yt), ¢; is the optimal policy!

> For a given grid of a4 values, we can solve for (¢, a;, yt), then approximate c¢(az, yt) on
this grid (typically by linearly interpolating).

> Not a generic method, but when it works it is very simple and effective.

- See Maliar and Maliar (2013), and other work for similar envelope condition method.
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Perturbation Methods
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Perturbation Methods

» Based on local expansion around a point.

» Computationally cheap, but less accurate far from approximation point.

- Great as initial guess for global solution.

> Fold exogenous states into x; to rewrite

0 = Et [f (Xt, ¥t, Xt 11, Yt11)]
yt=9g(xt,0)
Xt1 = h(Xt, o) + onetsq.

> Note that g and h are different from earlier notation.
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Perturbation Methods

» First order perturbation:
Yyt =9g(X,0) 4 gx(X,0)(x — X) + gs(X,0)c
Xt4+1 = h(X,0) 4+ hx(X,0)(x —X) + hy(X,0)0 + onet 41

> Choose values to set derivatives of equilibrium condition to zero:
(Xt) . 0= fx + fygx + fx/ hx + fy/gxhx

(o) : o = fyg, + fyh, +fy (8- + gxhy) (2)

» Solution to (2) implies g, = h, = 0 (no risk effects).
> Apply g(x,0) =y, h(X,0) = X, define e.g., X = x — X, to obtain system that must solve (1):
Yt = gxXt

Key1 = hyXe + onersq

» Many solution techniques: Sims (2001), Klein (2000).
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Higher Order Perturbations

» Second-order perturbation (see e.g., Judd and Guu (1997) for solution method):
) 1 . 1
Vi = 8xXt + EGXX(Xt ®Xt) + Egaoaz
. W1 . 1
Xty1 = hxXt + EHxx(Xt ®Xt) + EhmTo'z + ONEt41

» Now risk influences policy functions (in a constant way).
- Third-order: o2&; term linear in states.

- Higher order: nonlinear risk-state interactions.

> Major problem: explosiveness. Univariate example:

2
N 1, o 1 1, o
Xt+1 - + 5 hXXX? - + 5 hXX < o + 5 hXXX§_1 >
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Pruned State Space

> Pruned state-space approach (Andreasen et al, 2018). Split x; into first-order terms x{ and
second-order terms x::

= i+ oy

N N 1
xf+1:hxxf+5Hxx(f® M+ hm,a

» No interaction between x° and x° means no explosiveness:  &; = A(L)et + B(L)e?.

> Policy functions:
of o 1
= 8x (thc +x§) + Gxx( ®X’; )+ Egmaz

> See paper for third-order equivalent.
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Perfect Foresight Paths
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Perfect Foresight Paths
» Perfect foresight paths (also known as deterministic transition paths, or “MIT shocks”)

> Idea: if we assume no risk from today on, then path back to steady state is solution to
equilibrium conditions.

> Notation for equilibrium conditions:
f(St-1,5t,St41:2t) = 0
where s’ = (x’,y’) are endogenous states and policy functions, and z are exogenous states.

» Deterministic environment buys a lot of tractability.

- Because no shocks will arrive, we can directly use s;;,. Don’t need expectations.
- Can directly use nonlinear equilibrium conditions for f, no need to linearize.

- Can change parameters or apply shocks to exogenous states.
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Perfect Foresight Paths

» Solution and notation follow Juillard, Laxton, McAdam, Pioro (1998).

> Stack equations to form
fo(so)

f1(S0.51,52)
f(s) = : = (3)

fr(sr—a, .ST. ST41)
frea(sT41)

including additional initial and terminal equations, typically

fo(So) = S0 — S frea(ST44) = ST — 5?;_5_1

where sg is the initial steady state, and s7_, is the final steady state.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 31/



Perfect Foresight Paths

> Typically solved using Newton’s method:

As = —f'(s)7'f
~~

step size

> Key to solution is computing inverse Jacobian f'(s) . Want to solve:

I

L1 C’I F1

.t As = —f
I

where L;, C;, and F; are the derivatives of f;(st—_+, St, St+1) with respect to s¢_, St, St41-
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Perfect Foresight Paths

» In practice, this matrix has size n(T +2) x n(T + 2), where n is the number of equilibrium
conditions and T is the number of periods.

- Most of the entries are zeros, so sparse matrix tools can handle it.

- Alternative: Juillard, Laxton, McAdam, Pioro (1998) provide a recursive algorithm computing As.

> Weakness of the approach: exactly end at steady state.

- May require huge number of periods to avoid distorting the calculations.

> My alternative: assume that by end of the sample equilibrium follows linearized solution.

- Linearized solution: y; = Gxx; + Gzz; where y; are endog. controls and x; are endog. states.

- Replace terminal condition with the following (h is transition equation):

X744 — h(sT,Z
fT+1(St) _ T+1 ( T T+1) — 0.

T W41 — GxXTq — GzZ7 44
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Sequence Space Jacobian
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Sequence Space Jacobian

> Some questions require heterogeneous agent models.

- Although you should keep in mind that some do not.

> In these cases, working with endogenous aggregate states is complex.

- Often, only a small subset of aggregate quantities (e.g., prices) matter for individual behavior.
- However, values of these aggregates may depend on the entire distribution.
- Krusell-Smith approach approximates using simpler forecasts based only on moments.

- But computationally intensive, and no guarantee this will work well.

» Recent alternative: sequence space jacobian.

- Method to compute linearized impulse responses or perfect foresight paths.

- Note: these solutions remove aggregate risk, but not idiosyncratic risk.
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Sequence Space Jacobian

> Start with a function that defines the aggregate equilibrium H = o.

» Example in neoclassical production model, capital market clearing:
He(K, Z) = /ik,-vt(x, Z) — Ke.
> For linearized impulse response, can use approximation

HxdK + HzdZ =0

to obtain
dK = —H'HzdZ

> Can also solve this H(K,Z) = 0 as nonlinear system of equations.

> Key to both solutions is the Jacobian, (Hk, Hz).
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Sequence Space Jacobian

> First, we need to split the problem.
- Het. agent models generally intractable when behavior depends on entire distribution.
- Need to collapse to a subset of aggregate states X; sufficient for the individual’s problem.
- In classical Krusell-Smith model, this is just prices (r¢, wt).
> Define block Y = h(X) to be mapping between sufficient states X and aggregate outputs Y.
- In this example, X is prices, Y is capital demand.
- Full model equilibrium requires multiple blocks:
H(K,Z) = H(h(X),Z) = H(h(g(K,2))Z)
where g(K,Z) maps states into prices (equal marginal products from firm FOCs).

- Efficiency gains from applying closed form solutions when available (see paper).

> Then can compute Jacobian (Hg, Hz) using the chain rule given Jacobians of h, X(-).
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Sequence Space Jacobian
» Define notation for the problem as

Individual optimality: Vi = V(Viq, Xt)
Distribution law of motion: Dty = A(Verq, Xt) Dt
Measurement of agg. states: Yt = ¥(Viq, X¢)'Dy.

> Apply a single shock of size dx to X at time s.

- Then we want to compute dYz, change in Y at time t due to shock at time s.
> Take limitas dx — o:  dY; = (dy;)'D§ + (y;)'dD§

» Possible (but costly) to compute directly.

- Apply the shock at time s, solve v backwards, then iterate D forwards.

- Repeat this for each time s.
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Sequence Space Jacobian

> First efficiency gain: policy functions depend only on distance to shock s — t

Vi = Vil A= ATk
> Second gain: use the fact that dx — o to simplify the problem
dYf = (dyt)'D; + (¥7)'dD; = (dy7)'Dss + V55D

> Now subtract dY;

dY§ —dv;~ = (dyi — dyi]) Dss +yss(dD§ — dD§ )
=0

= y;s(de - dD?:_:)
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Sequence Space Jacobian
» Difference in distributions:
dD; = (dA7_,)'Dss + (Ass)'dDt_4
> Now difference as in previous slide:

dD; — dD;~] = (dA_, — dA7 ;) Dss + Ags(dDi—q — dD¢_5)
=0

== Ags(th_1 - th_z)

= (Ags)t_1(dD1 - dDo)
= (Ag) " (dAY) Dss

» Recursive structure re-using repeated terms much cheaper to compute.
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Conclusion

> Many tools available, want to select right tools for the right job.

> More complex or high tech is not always better!

- Simpler models are often easier to understand.
- You can run lots of things to gain intuition about role of different mechanisms.

- You retain degrees of freedom to use on other features.

> My advice: start with simple methods before complexifying.

- My personal favorite: perfect foresight paths.
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