
Financial Theory IV: Solving Structural Models

Dan Greenwald

Spring 2024

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 1 / 41

Dynamic Programming
▶ Let xt be endogenous states, zt be exogenous states, and yt be controls.

▶ Basic problem:

V(xt, zt) = max
yt∈Γ(xt,zt)

F(xt, yt, zt) + βEt [V(xt+1, zt+1)]

xt+1 = g(xt, yt, zt)
zt+1 = h(zt, εt+1)

▶ Example: consumption-savings problem.

V(at,wt) = max
xt≥0

u (at +wtL̄− st) + βEt [V(at+1,wt+1)]

at+1 = Rst
logwt+1 = (1 − ρ) log w̄+ ρ logwt + εt+1, εt+1 ∼ N(0, σ2)

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 2 / 41

Dynamic Programming: Discrete Models

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 3 / 41

Discrete Dynamic Programming

▶ Very simple and robust approach: assume xt ∈ X = (x̄1, . . . , x̄N), zt ∈ Z = (z̄1, . . . , z̄K).
- Easy to estimate time series using Hamilton filter (see Farmer, 2017).

▶ Basic problem reframed:

V(xt, zt) = max
xt+1∈Γ(xt,zt)

F(xt, zt, xt+1) + β ∑
zt+1

P(zt+1|zt)V(xt+1, zt+1)

▶ Effects of discretization:
- Choose xt+1 directly instead of yt (can’t leave grid).

- Expectation is matrix multiplication.

▶ Notation: X(a,b; c) is a matrix where the columns stack over a and b (i.e.,
(a1,b1), (a1,b2), . . . , (a2,b1), . . .) and the rows stack over c.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 4 / 41

Discrete Dynamic Programming

▶ Step 1: given iteration k guess Vk, optimize decision.

▶ Define
Q(xt, zt; xt+1) = F(xt, zt; xt+1)︸ ︷︷ ︸

NK×N

+β
(
P(zt; zt+1)︸ ︷︷ ︸

K×K

⊗ 1N︸︷︷︸
N×1

)
V(xt+1; zt+1)

′︸ ︷︷ ︸
K×N

if xt+1 ∈ Γ(xt, zt), and −∞ otherwise.
▶ Reminder: ⊗ is the Kronecker product, so that

A⊗ B =

A11B · · · A1nB
...

. . .
...

An1B · · · AnnB

▶ Define x∗t+1(xt, zt) = argmaxxt+1 Q(xt, zt; xt+1). This is the column-wise max.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 5 / 41

Discrete Dynamic Programming

▶ Step 2: given decisions, update V (“Howard Improvement”).
- Can update Vk+1 by plugging in x∗t+1 and Vk on the RHS, then iterate, but this is slow.
- Better approach: solve for exact value function under policy x∗t+1.

▶ Define:

A(xt, zt, xt+1, zt+1) = P(zt+1|zt) · 1 {xt+1 = x∗t+1(xt, zt)}
F∗(xt, zt) = F(xt, zt, x∗t+1)

▶ Then we have:

V(xt, zt)︸ ︷︷ ︸
NK×1

= F∗(xt, zt)︸ ︷︷ ︸
NK×1

+β A(xt, zt; xt+1, zt+1)︸ ︷︷ ︸
NK×NK

V(xt+1, zt+1)︸ ︷︷ ︸
NK×1

which implies the exact solution Vk+1 = (I− βA)−1F∗.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 6 / 41

Discrete Dynamic Programming

▶ Iterate on Steps 1 and 2 until x∗t+1 stops changing. Then you are done!

▶ Stationary distribution: eigenvector of A′ associated with unit eigenvalue.
- Similarly, stationary dist. of exogenous states is eigenvector of P′ with unit eigenvalue.

▶ Note: A will contain many zeros, often better to use sparse matrices.

▶ For P, use Rouwenhorst (1995) method to approximate Gaussian AR(1) processes.

- Other approximations struggle as ρ → 1.

- Better to read treatment in Kopecky and Suen, RED 2010.

▶ Suffers from curse of dimensionality, but GPUs can provide huge speedup!

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 7 / 41

Special Case: Exogenous Asset Pricing

▶ Assume that all states are exogenous.

▶ Combine Et[Mt+1Rt+1] = 1 and definition Rt+1 = (Pt+1 + Dt+1)/Pt to obtain

PD(zt) = Et
{
M(zt, zt+1) (PD(zt+1) + 1) D(zt+1)

D(zt)

}
.

▶ Then we can solve for PD exactly with a single linear inversion:

A(zt, zt+1) ≡ P(zt, zt+1)M(zt, zt+1)
D(zt+1)

D(zt)

PD(zt) = A(zt; zt+1)
(
PD(zt+1) + 1K

)
PD = (I− A)−11K

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 8 / 41

Dynamic Programming: Continuous Models

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 9 / 41

Generic Optimality Conditions

▶ As long as the problem is well-behaved (uniquely determined by FOCs), it is usually better
to solve the FOCs than to directly use the value function.

▶ Typical approach is to just start taking derivatives, but can actually be more systematic.

▶ Let’s add some additional structure (slight change of notation):

- Let ct be consumption, and yt be all other controls.

- Let Ψ(xt, ct, yt, zt) ≥ 0 be the budget constraint, and Γ(xt, ct, yt, zt) ≥ 0 be all other constraints.

- Assume the budget constraint is written ct ≤ · · · so that ∂Ψt/∂ct = −1.

- Let F(xt, yt, zt) = u(xt, ct, yt, zt).

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 10 / 41

Generic Optimality Conditions

▶ Generic optimality condition for yt:

0 =

(
∂ut
∂ct

)−1 ∂ut
∂yt︸ ︷︷ ︸

utility

+
∂Ψt
∂yt︸︷︷︸

resources

+ µt
∂Γt
∂yt︸ ︷︷ ︸

constraints

+ Ωt
∂xt+1
∂yt︸ ︷︷ ︸

continuation

▶ All quantities expressed in units of consumption.

▶ Marginal continuation values Ωt defined by fixed point

Ωt = Et

{
Mt+1

[(
∂ut+1
∂ct+1

)−1 ∂ut+1
∂xt+1

+
∂Ψt+1
∂xt+1

+ µt+1
∂Γt+1
∂yt+1

+ Ωt+1
∂xt+2
∂xt+1

]}

where Mt+1 is the SDF. Note: works for EZW preferences.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 11 / 41

Example: Kaltenbrunner and Lochstoer (2010)

▶ Preferences: Ut =

(
(1 − β)C1−ρ

t + βEt
[
U1−γ
t+1

] 1−ρ
1−γ

) 1
1−ρ

▶ Budget constraint: Ct ≤ Z1−α
t Kα

t − itKt.

▶ Endogenous state LOM: Kt+1 = (1 − δ)Kt + ϕ(it)Kt.

▶ Exogenous state LOM: log Zt+1 = ϕ log Zt + εt+1.

▶ Optimality conditions:

0 = −1 + ϕ′(it)ΩK,t

ΩK,t = Et

{
Mt+1

[
α

(
Zt+1
Kt+1

)1−α

− it+1 +
(
(1 − δ) + ϕ(it+1)

)
ΩK,t+1

]}

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 12 / 41

Example: Kaltenbrunner and Lochstoer (2010)

▶ Preferences: Ut =

(
(1 − β)C1−ρ

t + βEt
[
U1−γ
t+1

] 1−ρ
1−γ

) 1
1−ρ

▶ Budget constraint: Ct ≤ Z1−α
t Kα

t − itKt.

▶ Endogenous state LOM: Kt+1 = (1 − δ)Kt + ϕ(it)Kt.

▶ Exogenous state LOM: log Zt+1 = ϕ log Zt + εt+1.

▶ Optimality conditions:

1 = Et [Mt+1Rt+1]

Rt+1 ≡
α(Zt+1/Kt+1)1−α − it+1 +

(
(1 − δ) + ϕ(it+1)

)
qt+1

qt
qt ≡ ϕ′(it)−1

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 12 / 41

Complementary Slackness

▶ Complementary slackness: given constraint Γt and multiplier µt:

µtΓt = 0, µt ≥ 0, Γt ≥ 0.

▶ Example: lower bound yt ≥ 0.

- Challenge: kinked, nondifferentiable policy function.

▶ Auxiliary variable (Garcia and Zangwill) approach:

- Define policy function as auxiliary variable αt.

- Define yt = max(αt,0)k for k > 1.

- Define µt = max(−αt,0)k for k > 1.

▶ Delivers continuously differentiable policy function.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 13 / 41

Time Iteration

▶ Assume equilibrium conditions follow f (x, y, z, E(x, y, z)) = 0, where

Et = Et [q(xt+1, yt+1, zt+1)]

▶ Choose grid {x̄i, z̄i} and basis functions ψ(s, z).

▶ Let bk be the coefficients from the previous (kth) iteration.

▶ Key idea: use previous guess bk to form expectations E :

yt+1 = b′kψ(xt+1, zt+1)

Et = ∑
j

ωjq(xt+1, yt+1, zt+1)

where ωj are quadrature weights, then solve for yt given Et.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 14 / 41

Time Iteration on Controls
▶ Time iteration on controls: for each (x̄i, z̄i), choose yi so f (x̄i, yi, z̄i, E(x̄i, z̄i;bk)) = 0, with

Et(x̄i, z̄i;bk) = ∑
j

ωjq
(
xt+1,b′kψ(xt+1, zt+1), zt+1

)
▶ Recipe: given yi, quadrature node ε̄j, compute

xt+1 = g(x̄i, yi, z̄i)
zt+1 = h(z̄i, ε̄j).

▶ Use nonlinear equation solver. Gradient:

df
dyt

=
∂f
∂yt

+
∂f
∂Et

Et
[

∂xt+1
∂yt

(
∂q

∂xt+1
+

∂q
∂yt+1

∂yt+1
∂xt+1

)]
where ∂yt+1/∂xt+1 = b′k(∂ψ(xt+1, zt+1)/∂xt+1).

▶ Once solutions {y∗i } have been found, choose bk+1 so that y∗i = b′k+1ψ(x̄i, z̄i) ∀i, repeat.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 15 / 41

Time Iteration
▶ Iterating on controls is straightforward but not very efficient.

- Additional challenge: yt+1 may not be non-smooth in states.

▶ Alternative: time iteration on coefficients. Solve directly for b̂ that satisfies

f
(
x̄i, b̂′ψ(x̄i, z̄i), z̄i, E

)
= 0.

i.e., compute yi = b̂′ψ(x̄i, z̄i) and proceed as before.

▶ Use nonlinear equation solver with gradient

∂f
∂b̂

=

{
∂f
∂yt

+
∂f
∂Et

Et
[

∂xt+1
∂yt

(
∂q

∂xt+1
+

∂q
∂yt+1

∂yt+1
∂xt+1

)]}
∂yt
∂b̂

where ∂yt/∂b̂ = ψ(xt, zt)′.

▶ Update bk+1 = b̂ and repeat until ||bk+1 − bk|| is smaller than some threshold.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 16 / 41

Direct Solution

▶ Most efficient (but least robust): solve for b directly.

▶ Apply same solution to both sides:

0 = f
(
xt,b′ψ(xt, zt), zt, Et

)
Et = Et

[
q
(
xt+1,b′ψ(xt+1, zt+1), zt+1

)]
.

▶ Run nonlinear equation solver with gradient

∂f
∂b

=
∂f
∂yt

∂yt
∂b

+
∂f
∂Et

Et
[(

∂q
∂xt+1

+
∂q

∂yt+1

∂yt+1
∂xt+1

)
∂xt+1
∂yt

∂yt
∂b

+
∂q

∂yt+1

∂yt+1
∂b

]
▶ Can start with time iteration and then switch to direct solution to get best of both worlds.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 17 / 41

Special Case: Exogenous Asset Pricing

▶ Return to special case

PD(zt) = Et
{
M(zt, zt+1) (PD(zt+1) + 1) D(zt+1)

D(zt)

}
.

▶ Apply guess PD(zt) = ψ(zt)′b, and use quadrature scheme (ωj, ε̄j):

ψ(zt)′b = ∑
j

ωjM(zt, ε̄j)

(D(zt, ε̄j)

D(zt)

)(
ψ(zt, ε̄j)

′b+ 1
)

with slight abuse of notation to substitute (zt, ε̄j) for zt+1.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 18 / 41

Special Case: Exogenous Asset Pricing

▶ If we now define

A(zt) = ∑
j

ωjM(zt, ε̄j)

(D(zt, ε̄j)

D(zt)

)
ψ(zt, ε̄j)

c(zt) = ∑
j

ωjM(zt, ε̄j)

(D(zt, ε̄j)

D(zt)

)

then we obtain

Ψb = Ab+ c
b = (Ψ − A)−1c

▶ Another one-step linear solution!

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 19 / 41

Additional Refinements

▶ Precomputation:

- Can save time by pre-computing ψ(x̄i, z̄i).

- Note that for a given grid {z̄i} and nodes {ε̄j}, end up with the same grid over zt+1.

- If ψ(xt+1, zt+1) = ψx(xt+1)ψz(zt+1), then we can also precompute ψz(zt+1(z̄i, ε̄j)).

▶ Adaptive domain:

- Approximations work better when variables are not highly correlated.

- Better: use principal components as states.

- Do SVD to obtain X = (x1, . . . , xT)′ = USV′, then the PCs are X̃ = XV.

- Recover X using X = X̃V′.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 20 / 41

Adaptive Domain: Illustration

function, we can use an anisotropic Smolyak method in which μ1 ¼ μ in dimension 1 and μj ¼ 1 for all other dimensions,
j¼ 2;…; d. In Fig. 5, we show the corresponding ratio of the number of points under isotropic and anisotropic versions of the
Smolyak method. Again, the “iso-function-count” curves show the number of the Smolyak elements.

Gains from anisotropic constructions may vary depending on the anisotropy of specific decision or value functions in
economic models. In our example, the savings are sizable when d and μ are large. For example, when d¼6 and μ¼ 5 for
dimension 1, the number of grid points and basis functions is reduced by about 4 times compared to the isotropic grid.

5. Smolyak method with adaptive domain

The Smolyak construction tells us how to represent and interpolate functions defined on a normalized d-dimensional
hypercube. However, the solution domain of a typical dynamic economic model does not have the shape of a hypercube but
can be a set of any shape in a d-dimensional space. We now describe how to effectively adapt a multidimensional Smolyak
hypercube to an unstructured solution domain of a given economic model.

5.1. Adaptive parallelotope

The ergodic set (i.e., the support of the ergodic distribution) of a dynamic economic model can have any shape in a
d-dimensional space. It may be even an unbounded set such as Rd

þ . We must first construct a d-dimensional parallelotope
to enclose the relevant area of the state space of the studied model, typically, a high-probability area of the ergodic set.
We must then match the parallelotope to a normalized hypercube ½�1;1�d used by the Smolyak method.

As an example, in Fig. 6, we plot a simulation of 10,000 observations for capital and productivity level in a representative-
agent neoclassical stochastic growth model with a closed-form solution (see Section 6.1 for a detailed description of this
model).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

d

R
d,
μ

μ=1 μ=2 μ=3 μ=4 μ=5

points 100

points 10

points
1000

Fig. 5. The ratio of the number of basis functions under isotropic and anisotropic versions of the Smolyak method.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
P

ro
du

ct
iv

ity
 le

ve
l,θ

t

Capital, kt

Fig. 6. Two rectangular domains enclosing a set of simulated points.

K.L. Judd et al. / Journal of Economic Dynamics & Control 44 (2014) 92–123108

Source: Judd, Maliar, Maliar, Valero (2013).
Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 21 / 41

Special Case: Endogenous Grid Method

▶ Typically choose grid, then solve so optimality conditions hold on it.

- But sometimes can skip optimization step by exploiting properties of equilibrium condition.

- Endogenous grid method of Carroll (2006).

▶ Example: consider a life-cycle Bewley model with Euler equation

ct(at, yt)−γ = βEt
[
ct+1(at+1, yt+1)

−γ
]

where t is age, a is assets, and y is income, subject to the budget constraint

ct + R−1at+1 = at + yt

▶ Given (at, yt), we cannot solve for ct (equivalently, at+1) in closed form.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 22 / 41

Special Case: Endogenous Grid Method
▶ But what if we somehow knew next period’s value of at+1 and next period’s policy function

ct+1? Then from the Euler equation we would know

c∗t =
{

βEt
[
ct+1(at+1, yt+1)

−γ
]}−1/γ

and from the budget constraint we would know

a∗t = c∗t + R−1at+1 − yt.

▶ This means that if we start at (a∗t , yt), c∗t is the optimal policy!

▶ For a given grid of at+1 values, we can solve for (c∗t ,a∗t , yt), then approximate ct(at, yt) on
this grid (typically by linearly interpolating).

▶ Not a generic method, but when it works it is very simple and effective.

- See Maliar and Maliar (2013), and other work for similar envelope condition method.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 23 / 41

Perturbation Methods

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 24 / 41

Perturbation Methods

▶ Based on local expansion around a point.

▶ Computationally cheap, but less accurate far from approximation point.

- Great as initial guess for global solution.

▶ Fold exogenous states into xt to rewrite

0 = Et [f (xt, yt, xt+1, yt+1)]

yt = g(xt, σ)

xt+1 = h(xt, σ) + σηεt+1.

▶ Note that g and h are different from earlier notation.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 25 / 41

Perturbation Methods
▶ First order perturbation:

yt = g(x̄,0) + gx(x̄,0)(x− x̄) + gσ(x̄,0)σ
xt+1 = h(x̄,0) + hx(x̄,0)(x− x̄) + hσ(x̄,0)σ + σηεt+1

▶ Choose values to set derivatives of equilibrium condition to zero:

(xt) : 0 = fx + fygx + fx′hx + fy′gxhx (1)
(σ) : 0 = fygσ + fx′hσ + fy′ (gσ + gxhσ) (2)

▶ Solution to (2) implies gσ = hσ = 0 (no risk effects).

▶ Apply g(x̄,0) = ȳ,h(x̄,0) = x̄, define e.g., x̂ = x− x̄, to obtain system that must solve (1):

ŷt = gxx̂t
x̂t+1 = hxx̂t + σηεt+1

▶ Many solution techniques: Sims (2001), Klein (2000).

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 26 / 41

Higher Order Perturbations
▶ Second-order perturbation (see e.g., Judd and Guu (1997) for solution method):

ŷt = gxx̂t +
1
2Gxx(x̂t ⊗ x̂t) +

1
2gσσσ2

x̂t+1 = hxx̂t +
1
2Hxx(x̂t ⊗ x̂t) +

1
2hσσσ2 + σηεt+1

▶ Now risk influences policy functions (in a constant way).

- Third-order: σ2x̂t term linear in states.

- Higher order: nonlinear risk-state interactions.

▶ Major problem: explosiveness. Univariate example:

x̂t+1 = · · ·+ 1
2hxxx̂

2
t = · · ·+ 1

2hxx
(
· · ·+ 1

2hxxx̂
2
t−1

)2

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 27 / 41

Pruned State Space

▶ Pruned state-space approach (Andreasen et al, 2018). Split xt into first-order terms xft and
second-order terms xst :

x̂ft+1 = hxx̂ft + σηεt+1

x̂st+1 = hxx̂st +
1
2Hxx(x̂

f
t ⊗ x̂ft) +

1
2hσσσ2

▶ No interaction between xs and xs means no explosiveness: x̂t = A(L)εt + B(L)ε2
t .

▶ Policy functions:

ŷt = gx
(
x̂ft + x̂st

)
+

1
2Gxx(x̂

f
t ⊗ x̂ft) +

1
2gσσσ2

▶ See paper for third-order equivalent.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 28 / 41

Perfect Foresight Paths

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 29 / 41

Perfect Foresight Paths
▶ Perfect foresight paths (also known as deterministic transition paths, or “MIT shocks”)

▶ Idea: if we assume no risk from today on, then path back to steady state is solution to
equilibrium conditions.

▶ Notation for equilibrium conditions:

f (st−1, st, st+1; zt) = 0

where s′ = (x′, y′) are endogenous states and policy functions, and z are exogenous states.

▶ Deterministic environment buys a lot of tractability.

- Because no shocks will arrive, we can directly use st+1. Don’t need expectations.

- Can directly use nonlinear equilibrium conditions for f , no need to linearize.

- Can change parameters or apply shocks to exogenous states.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 30 / 41

Perfect Foresight Paths

▶ Solution and notation follow Juillard, Laxton, McAdam, Pioro (1998).

▶ Stack equations to form

f(s) =

f0(s0)

f1(s0, s1, s2)
...

fT(sT−1, sT , sT+1)
fT+1(sT+1)

 = 0 (3)

including additional initial and terminal equations, typically

f0(s0) = s0 − s∗0 fT+1(sT+1) = sT+1 − s∗T+1

where s∗0 is the initial steady state, and s∗T+1 is the final steady state.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 31 / 41

Perfect Foresight Paths

▶ Typically solved using Newton’s method:

∆s︸︷︷︸
step size

= −f ′(s)−1f

▶ Key to solution is computing inverse Jacobian f ′(s)−1. Want to solve:
I
L1 C1 F1

.
LT CT FT

I

∆s = −f

where Lt, Ct, and Ft are the derivatives of ft(st−1, st, st+1) with respect to st−1, st, st+1.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 32 / 41

Perfect Foresight Paths
▶ In practice, this matrix has size n(T + 2)× n(T + 2), where n is the number of equilibrium

conditions and T is the number of periods.

- Most of the entries are zeros, so sparse matrix tools can handle it.

- Alternative: Juillard, Laxton, McAdam, Pioro (1998) provide a recursive algorithm computing ∆s.

▶ Weakness of the approach: exactly end at steady state.

- May require huge number of periods to avoid distorting the calculations.

▶ My alternative: assume that by end of the sample equilibrium follows linearized solution.

- Linearized solution: yt = Gxxt + Gzzt where yt are endog. controls and xt are endog. states.

- Replace terminal condition with the following (h is transition equation):

fT+1(st) =
[

xT+1 − h(sT , zT+1)
yT+1 − GxxT+1 − GzzT+1

]
= 0.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 33 / 41

Sequence Space Jacobian

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 34 / 41

Sequence Space Jacobian
▶ Some questions require heterogeneous agent models.

- Although you should keep in mind that some do not.

▶ In these cases, working with endogenous aggregate states is complex.

- Often, only a small subset of aggregate quantities (e.g., prices) matter for individual behavior.

- However, values of these aggregates may depend on the entire distribution.

- Krusell-Smith approach approximates using simpler forecasts based only on moments.

- But computationally intensive, and no guarantee this will work well.

▶ Recent alternative: sequence space jacobian.

- Method to compute linearized impulse responses or perfect foresight paths.

- Note: these solutions remove aggregate risk, but not idiosyncratic risk.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 35 / 41

Sequence Space Jacobian

▶ Start with a function that defines the aggregate equilibrium H = 0.
▶ Example in neoclassical production model, capital market clearing:

Ht(K, Z) =
∫
i
ki,t(X, Z)− Kt.

▶ For linearized impulse response, can use approximation

HKdK + HZdZ = 0

to obtain
dK = −H−1

K HZdZ

▶ Can also solve this H(K, Z) = 0 as nonlinear system of equations.

▶ Key to both solutions is the Jacobian, (HK,HZ).

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 36 / 41

Sequence Space Jacobian
▶ First, we need to split the problem.

- Het. agent models generally intractable when behavior depends on entire distribution.

- Need to collapse to a subset of aggregate states Xt sufficient for the individual’s problem.

- In classical Krusell-Smith model, this is just prices (rt,wt).

▶ Define block Y = h(X) to be mapping between sufficient states X and aggregate outputs Y.

- In this example, X is prices, Y is capital demand.

- Full model equilibrium requires multiple blocks:

H(K, Z) = H(h(X), Z) = H(h(g(K, Z))Z)

where g(K, Z) maps states into prices (equal marginal products from firm FOCs).

- Efficiency gains from applying closed form solutions when available (see paper).

▶ Then can compute Jacobian (HK,HZ) using the chain rule given Jacobians of h, X(·).

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 37 / 41

Sequence Space Jacobian
▶ Define notation for the problem as

Individual optimality: vt = v(vt+1,Xt)
Distribution law of motion: Dt+1 = Λ(vt+1,Xt)′Dt

Measurement of agg. states: Yt = y(vt+1,Xt)′Dt.

▶ Apply a single shock of size dx to X at time s.

- Then we want to compute dYst , change in Y at time t due to shock at time s.

▶ Take limit as dx → 0: dYst = (dyst)′Dst + (yst)′dDst

▶ Possible (but costly) to compute directly.

- Apply the shock at time s, solve v backwards, then iterate D forwards.

- Repeat this for each time s.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 38 / 41

Sequence Space Jacobian

▶ First efficiency gain: policy functions depend only on distance to shock s− t

yst = ys+kt+k , Λs
t = Λs+k

t+k .

▶ Second gain: use the fact that dx → 0 to simplify the problem

dYst = (dyst)′Dst + (yst)′dDst = (dyst)′Dss + y′ssdDst .

▶ Now subtract dYs−1
t−1 :

dYst − dYs−1
t−1 = (dyst − dys−1

t−1)
′︸ ︷︷ ︸

=0

Dss + y′ss(dDst − dDs−1
t−1)

= y′ss(dDst − dDs−1
t−1)

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 39 / 41

Sequence Space Jacobian
▶ Difference in distributions:

dDst = (dΛs
t−1)

′Dss + (Λss)
′dDt−1

▶ Now difference as in previous slide:

dDst − dDs−1
t−1 = (dΛs

t−1 − dΛs−1
t−2)

′︸ ︷︷ ︸
=0

Dss + Λ′
ss(dDt−1 − dDt−2)

= Λ′
ss(dDt−1 − dDt−2)

...
= (Λ′

ss)
t−1(dD1 − dD0)

= (Λ′
ss)

t−1(dΛ1
0)

′Dss

▶ Recursive structure re-using repeated terms much cheaper to compute.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 40 / 41

Conclusion

▶ Many tools available, want to select right tools for the right job.

▶ More complex or high tech is not always better!

- Simpler models are often easier to understand.

- You can run lots of things to gain intuition about role of different mechanisms.

- You retain degrees of freedom to use on other features.

▶ My advice: start with simple methods before complexifying.

- My personal favorite: perfect foresight paths.

Dan Greenwald Financial Theory IV: Solving Structural Models Spring 2024 41 / 41

