15.474: Credit and House Prices

Daniel Greenwald

May 2022

Introduction

- Exciting research area central to macroeconomics and finance
 - Dominant asset for typical household, while mortgage is the dominant liability.
 - Housing and mortgage markets at center of global financial crisis.
- This lecture:
 - 1. Basic facts.
 - 2. Credit standards: LTV vs. PTI limits.
 - 3. When does credit move house prices?
 - 4. The role of multiple submarkets.

Housing and Mortgages: Stylized Facts

Housing Wealth

Plots from Davis and Van Nieuwerburgh (2014).

Housing Wealth

Ratios of housing wealth and structures to GDP, 1975:Q1 - 2013:Q3.

May 2022

4 / 101

Housing Wealth

Market value of land is \sim 1/3 of housing wealth, but highly volatile. Biggest factor in recent boom-bust.

4 / 101

Housing Expenditures

► Ratios of **housing and utilities spending** and **housing spending** to nondurable consumption expenditures, 1975:Q1 - 2013:Q3.

Housing Expenditures

▶ Very stable, little realized composition risk in recent years.

Price-Rent Ratios

▶ Instead, recent boom was mostly in price-rent ratios.

Price-Rent Ratios

Many ways to measure price-rent ratios, but all tell a similar story.

Homeownership Rate

► Homeownership rate has similar boom-bust, slightly leading price-rent ratios.

Mortgage Debt

Mortgage debt rising relative to GDP throughout boom.

Mortgage Debt

▶ But debt-housing wealth is flat over boom, only spikes when house prices fall in bust.

Household Portfolios

Shares of portfolio (top) and net worth (bottom). For most homeowners, housing is by far most important asset.

Housing Cyclicalities

- ► House prices, residential investment strongly procyclical.
- Residential investment extremely volatile, leads business cycle.

			Relative	Correlation of Variable X_s and GDP_t						
	Variable X	Std. Dev	Std. Dev	s = t-3	t-2	t-1	\mathbf{t}	t+1	t+2	t+3
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(a)	GDP	1.54	1.00	0.40	0.64	0.86	1.00	0.86	0.65	0.42
(b)	Consumption	0.85	0.55	0.49	0.67	0.81	0.84	0.75	0.59	0.41
(c)	Non-Res. Invest	4.74	3.07	0.13	0.36	0.61	0.81	0.87	0.82	0.70
(d)	Res. Invest	9.98	6.47	0.67	0.75	0.76	0.66	0.45	0.21	-0.02
(e)	House Prices*	4.16	2.70	0.47	0.53	0.55	0.52	0.46	0.41	0.35
(f)	Durables Quant.	4.49	2.91	0.51	0.67	0.79	0.82	0.65	0.44	0.21
(g)	Durables Prices	0.93	0.60	0.13	0.05	-0.04	-0.15	-0.24	-0.30	-0.35

Housing Cyclicalities

▶ House prices exhibit substantial momentum, eventual reversal (Guren, 2016).

12 / 101

House Price Determinants: Basic Theory

Simple Model

- Traditional macro-housing model with one-period debt (Iacoviello, 2005 or Monacelli, 2008).
- Representative borrower maximizes

$$V_{b,t} = E_t \sum_{j=0}^{\infty} \beta_b^j u(c_{b,t+j}, h_{b,t+j-1})$$

subject to

$$c_{b,t} \leq y_t - p_t^h(h_t - h_{t-1}) + m_t - R_{t-1}m_{t-1}$$

 $m_t \leq \theta p_t^h h_t.$

Housing optimality condition:

$$p_t^h = \frac{\mathsf{E}_t \left[\mathsf{\Lambda}_{b,t+1} \left(\rho_{t+1} + p_{t+1}^h \right) \right]}{1 - \mu_t \theta}$$

where $\rho_t = u_{b\,t}^h/u_{b\,t}^c$ and μ_t is multiplier on collateral constraint.

Simple Model

Express as price-rent ratio $PR_t = p_t^h/\rho_t$:

$$PR_{t} = \frac{E_{t} \left[\Lambda_{b,t+1} \left(1 + PR_{t+1} \right) \left(\rho_{t+1} / \rho_{t} \right) \right]}{1 - \mu_{t} \theta}$$

- ► Three possible reasons price-rent ratios move.
 - 1. Change in risk premium. (e.g., Favilukis et al., 2017).
 - 2. Change in expected rent growth. (e.g., Kaplan et al., 2020).
 - 3. Change in collateral premium. (e.g., Greenwald, 2018).

House Prices and Credit Constraints

- ▶ In simple LTV-only model, increasing θ increases prices.
- Now consider extension with two constraints, no heterogeneity:

$$m_t \leq \theta p_t^h h_t$$

 $m_t \leq \bar{M}_t$.

Optimality conditions:

$$p_{t}^{h} = \frac{E_{t} \left[\Lambda_{b,t+1} \left(\rho_{t+1} + p_{t+1}^{h} \right) \right]}{1 - \theta \mu_{1,t}}$$
$$\mu_{t} \equiv \mu_{1,t} + \mu_{2,t} = 1 - R_{t} E_{t} \left[\Lambda_{b,t+1} \right]$$

Surprising result: region of state space with positive measure where both constraints bind.

- Proof by contradiction.
- ► If collateral constraint binds, price is

$$ar{q}_{t}^{h} = rac{\mathsf{E}_{t}\left[\mathsf{\Lambda}_{b,t+1}\left(
ho_{t+1} + oldsymbol{p}_{t+1}^{h}
ight)
ight]}{\mathsf{1} - heta\mu_{t}}$$

▶ If collateral constraint doesn't bind, price is

$$\underline{q}_{t}^{h} = E_{t} \left[\Lambda_{b,t+1} \left(\rho_{t+1} + p_{t+1}^{h} \right) \right]$$

- For $\theta \underline{q}_t^h h_t \leq \bar{M}_t \leq \theta \bar{q}_t^h h_t$, must have both constraints binding (only way to get o $<\mu_{1,t}<\mu_t$).
- ▶ In this region, price moves one-for-one with \bar{M}_t , while price falls with θ .

- ▶ JPT further claim that second constraint \bar{M} needs to be on lender side.
- ▶ Demand-driven credit booms have counterfactual prediction that interest rates should rise:

$$R_{t} = \frac{1 - \mu_{t}}{\beta E_{t} \left[\Lambda_{b,t+1} \right]}$$

since $\mu_t \to o$ as constraints loosen.

Instead, can use lending supply constraint:

$$R_{t} = \frac{1 + \tilde{\mu}_{t}}{\beta E_{t} \left[\Lambda_{s,t+1} \right]}$$

where $\bar{\mu}$ is lender multiplier.

Now rates fall as $\bar{\mu} o$ o, matching boom experience.

- What's behind these results?
- ▶ Rate borrowers are willing to pay higher than rate lenders willing to accept.
- When only borrowers are constrained, effectively have all bargaining power, lenders forced to compete for them.
 - Equilibrium rate is lender reservation rate.
- When only lenders are constrained, situation is reversed, rate is borrower reservation rate.
- At the end of the day, comes down to assumptions on who has bargaining power. Can support many prices when credit is rationed.
 - Possible area for future research!

Greenwald (2018)

- "The Mortgage Credit Channel of Macroeconomic Transmission"
- **Approach**: General equilibrium framework with two novel features.
 - 1. Size of new loans limited by payment-to-income (PTI) constraint, alongside loan-to-value (LTV) constraint.
 - 2. Borrowers hold long-term, fixed-rate loans and can choose to prepay existing loans and replace with new ones (see paper).
- Main Finding: PTI liberalization appears essential to boom-bust.
 - Changes in LTV standards alone insufficient. PTI liberalization compelling theoretically and empirically.
 - Quantitative impact: 35% of observed rise in price-rent ratios, 42% of the rise in debt-household income from PTI relaxation alone.

21 / 101

Consider homebuyer who wants large house, minimal down payment. Faces PTI limit of 28%, LTV limit of 80%.

▶ At income of \$50k per year, 28% PTI limit \implies max monthly payment of \sim \$1,200.

► At 6% interest rate, \$1,200 payment ⇒ maximum PTI loan size \$160k. Plus 20% down payment ⇒ house price of \$200k.

22 / 101

► Kink in down payment at price \$200k. Below this point size of loan limited by LTV, above by PTI. Kink likely optimum for homebuyers.

► Interest rates fall from 6% to 5%. Borrower's max PTI now limits loan to \$178k (rise of 11%). Kink price now \$223k, housing demand increases.

► Increasing the maximum PTI ratio from 28% to 31% has a similar effect to fall in rates, increases max loan size and corresponding price.

In contrast, increasing maximum LTV ratio from 80% to 90% means that \$160k loan associated with only \$178k house. Housing demand falls.

Model Overview

- Borrowing ⇒ impatient borrowers/patient savers.
 - Permanent types with fixed measure χ_j for $j \in \{b, s\}$.
 - Preferences:

$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j E_t V_{j,t+1}$$

- Mortgage debt durable housing.
 - Divisible, cannot change stock without prepaying mortgage.
 - Fixed housing stock, saver housing demand.
- ► Realistic mortgage contracts ⇒ long-term fixed-rate bonds
 - Endogenous fraction ρ_t prepay each period, update balance and interest rate.
- ightharpoonup Movements in long rates \implies shock to inflation target (nominal), term premia (real).
- ► Effects on real economy ⇒ labor supply, sticky prices, TFP shocks.

Credit Limits

- Borrowers face two credit limits at origination only.
- ► Loan-to-value constraint: $m_{i,t}^* \le \theta^{ltv} p_t^h h_{i,t}^*$.
 - Widely studied in the literature.
 - Key property: moves with house prices.
 - $\bar{m}_{i,t}^{ltv} \equiv \theta^{ltv} p_t^h h_{i,t}^*$.
- ▶ Payment-to-income constraint: $(r_t^* + \alpha)m_{i,t}^* \leq (\theta^{pti} \omega) \cdot \text{income}_{i,t}$.
 - Real constraint affecting all US borrowers, but largely unstudied in macro.
 - Key property: moves with interest rates (elasticity \simeq 8).
 - $\bar{m}_{i,t}^{pti} \equiv (\theta^{pti} \omega) \cdot \mathsf{income}_{i,t}/(r_t^* + \alpha)$.
- ▶ Overall limit: $m_{i,t}^* \leq \min \left(\bar{m}_{i,t}^{ltv}, \bar{m}_{i,t}^{pti} \right)$.

LTV and PTI in the Data

LTV limits show up as large single-bin spikes at various institutional limits.

LTV and PTI in the Data

▶ PTI ratios instead look like truncated distribution. Are borrowers constrained?

ITV and PTI in the Data

Interpretation: some borrowers search for a house that exactly satisfies both limits, but may end up with one a little smaller. Then max out LTV.

LTV and PTI in the Data

Support for theory: PTI bunching larger in cash-out refinances, where no housing search occurs (even though LTVs lower).

► Housing optimality condition (unconstrained or no LTV):

$$p_{t}^{h} = \frac{u_{b,t}^{h}/u_{b,t}^{c} + E_{t} \left\{ \Lambda_{b,t+1} p_{t+1}^{h} \left[1 - \delta \right] \right\}}{1}$$

- $ightharpoonup \Lambda_{b,t+1}$ is borrower stochastic discount factor, μ_t is multiplier on credit constraint.
- $ightharpoonup C_t$ ("collateral value") is marginal value of relaxing constraint via extra \$1 of house value:

$$\mathcal{C}_{\mathsf{t}} \equiv \mu_{\mathsf{t}} \mathsf{F}^{\mathsf{ltv}}_{\mathsf{t}} \theta^{\mathsf{ltv}}$$

where F_t^{ltv} is fraction constrained by LTV.

▶ Housing optimality condition ($\rho_{t+1} = 1$, LTV only):

$$p_t^h = \frac{u_{b,t}^h/u_{b,t}^c + E_t \left\{ \Lambda_{b,t+1} p_{t+1}^h \left[1 - \delta \right] \right\}}{1 - \mu_t \theta^{ltv}}$$

- $ightharpoonup \Lambda_{b,t+1}$ is borrower stochastic discount factor, μ_t is multiplier on credit constraint.
- \triangleright C_t ("collateral value") is marginal value of relaxing constraint via extra \$1 of house value:

$$C_t \equiv \mu_t F_t^{ltv} \theta^{ltv}$$

where F_t^{ltv} is fraction constrained by LTV.

▶ Housing optimality condition ($\rho_{t+1} = 1$, LTV and PTI):

$$p_t^h = \frac{u_{b,t}^h/u_{b,t}^c + E_t \left\{ \Lambda_{b,t+1} p_{t+1}^h \left[1 - \delta \right] \right\}}{1 - C_t}$$

- $ightharpoonup \Lambda_{b,t+1}$ is borrower stochastic discount factor, μ_t is multiplier on credit constraint.
- \triangleright C_t ("collateral value") is marginal value of relaxing constraint via extra \$1 of house value:

$$C_t \equiv \mu_t F_t^{ltv} \theta^{ltv}$$

where F_t^{ltv} is fraction constrained by LTV.

► Housing optimality condition (Benchmark model):

$$p_{t}^{h} = \frac{u_{b,t}^{h}/u_{b,t}^{c} + E_{t}\left\{\Lambda_{b,t+1}p_{t+1}^{h}\left[1 - \delta - (1 - \rho_{t+1})C_{t+1}\right]\right\}}{1 - C_{t}}$$

- $ightharpoonup \Lambda_{b,t+1}$ is borrower stochastic discount factor, μ_t is multiplier on credit constraint.
- \triangleright C_t ("collateral value") is marginal value of relaxing constraint via extra \$1 of house value:

$$C_t \equiv \mu_t F_t^{ltv} \theta^{ltv}$$

where F_t^{ltv} is fraction constrained by LTV.

Constraint Switching Effect

- ▶ When rates fall, PTI limits loosen.
- **b** Borrowers switch from PTI-constrained to LTV-constrained, increasing F_t^{ltv} .
- House prices rise, also loosening LTV limits.

Comparison of Models

- Main Result #1: Strong transmission from interest rates into debt, house prices, economic activity.
- **Experiment:** consider economies that differ by credit limit and compare propagation of shocks:
 - 1. LTV Economy: LTV constraint only.
 - 2. PTI Economy: PTI constraint only.
 - 3. **Benchmark Economy**: Both constraints, applied borrower by borrower.
- **Computation:** Linearize model to obtain impulse responses.

Constraint Switching Effect (Monetary Policy Shock)

- ▶ Important feature of PTI limits: endogenously shifted by interest rates.
- ▶ IRF to near-permanent -1% (annualized) fall in nominal rates.

Constraint Switching Effect (Monetary Policy Shock)

▶ Debt response of Benchmark Economy closer to PTI Economy even though most borrowers constrained by LTV (75% in steady state).

Credit Standards and the Boom-Bust

- ▶ **Main Finding:** PTI liberalization essential to the boom-bust.
 - So far, have been treating maximum ratios θ^{ltv} , θ^{pti} as fixed, but credit standards can change.
 - Fannie/Freddie origination data: substantial increase in PTI ratios in boom.

Credit Standards and the Boom-Bust

Fannie Mae data: PTI constraints appear to bind after bust but not during boom.

Credit Standards and the Boom-Bust

Cash-out refi plots even more striking.

- ▶ Main Finding: PTI liberalization essential to the boom-bust.
 - So far, have been treating maximum ratios θ^{ltv} , θ^{pti} as fixed, but credit standards can change.
 - Fannie/Freddie origination data: substantial increase in PTI ratios in boom.
- **Experiment**: unexpectedly change parameters, unexpectedly return to baseline 32Q later.
 - 1. **PTI Liberalization**: θ^{pti} from 0.36 \rightarrow 0.54.
 - **2. LTV Liberalization:** θ^{ltv} from 0.85 \rightarrow 0.99.
- Computation: nonlinear transition paths.
 - Reference: Juillard, Laxton, McAdam, Pioro (1998).

Credit Liberalization Experiment

LTV liberalization generates small rise in debt-to-household income (15%). House prices, price-rent ratios **fall** (-2%).

Credit Liberalization Experiment

▶ PTI liberalization generates large boom in house prices, price-rent ratios (35%), debt-household income (33%).

Credit Liberalization Experiment

Liberalized PTI amplifies contribution of other factors (e.g., LTV liberalization) to boom.

Explaining the Boom

Add observed drop in mortgage rates: 0.82% fall in expected inflation, 1.08% fall in real rates. Captures 58% of price-rent, 62% of LTI increases.

► More Series

Explaining the Boom

ightharpoonup Overoptimistic HP beliefs (anticipated 24% increase in utility) small increase in LTV limit (85% ightharpoonup 88%) can explain remaining share.

► More Series

May 2022

Macroprudential Policy

But without PTI liberalization, other forces severely diminished, explain only 42% of price-rent, 43% of debt-income \implies necessary condition.

Macroprudential Policy

Liberalizing PTI only to Dodd-Frank limit of (36% \rightarrow 43%) would have made a big difference (down to 65% of price-rent, debt-income).

► More Series

Summary: Credit Standards

- Two key constraints in US mortgage market: LTV and PTI.
- ► Interaction ⇒ constraint switching effect:
 - Shifts in PTI limits lead to large movements in house prices.
- Loosening PTI limits key to 2000s housing boom.
 - Largest change in credit standards from microdata.
 - Model: observed PTI relaxation alone can explain \sim 1/3 of boom.
 - Removing PTI would kill \sim 60% of boom due to interaction with expectations.
- Note: PTI limits loosening again!

Do Credit Conditions Move House Prices?

Greenwald and Guren (2021)

- **▶** Do Credit Conditions Move House Prices?
- Previous paper considers which constraint was most relevant for housing boom.
- ▶ Broader debate in the literature: did credit matter at all?
 - Fundamental question for macroprudential policy.
- Two prominent (and opposing) examples:
 - Faviliukis-Ludvigson-Van Nieuwerburgh: Credit explains most (60%) of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.
- ► Key difference: Extent to which **credit insensitive** agents absorb credit-driven demand.
 - Depends on degree of **segmentation** in housing markets.

Greenwald and Guren (2021)

- Clearest in rental market, where two polar assumptions are often used:
- **Perfectly segmented**: Fixed homeownership rate.
 - Credit \rightarrow demand \rightarrow prices (e.g., FLVN).
- Perfectly frictionless: Deep-pocketed landlords who do not use credit.
 - When credit loosens, renters buy from landlord, prices pinned down by PV of rents (e.g., KMV).
- ▶ **Unconstrained savers** can play similar role unless their housing is segmented.

This Paper

- Main Question: How sensitive are house prices to credit standards and interest rates?
- **Approach:** Tractable macro-housing framework + novel empirical estimates.
 - Introduce model with arbitrary degree of segmentation through heterogeneity, nesting polar cases.
 - New empirical moment for calibration: Relative causal elasticity of price-rent and homeownership to credit supply shock is sufficient statistic for degree of segmentation.
 - Calibrate model to match empirical findings, then decompose boom-bust.

Main Findings:

- Price-rent ratio responds at least 3× more to identified credit shock than homeownership.
- Change in credit standards as in 2000s explains 34% and 55% of price-rent rise.
- Close to full segmentation model, much stronger than no segmentation model.

Time Series: Price-Rent Ratio vs. Home Ownership Rate

National data. Price/Rent: Flow of Funds. Homeownership: Census.

▶ Plot demand for owner-occupied housing. Price-rent ratio and homeownership rate robust to changes in housing stock.

Credit expansion: Demand for owner-occupied housing shifts right.

► Fixed "supply" (homeownership rate) ⇒ all adjustment through price-rent ratio.

ightharpoonup Perfect rental market \implies all adjustment through homeownership rate.

- In this world, increase in price-rent requires **separate** shock to supply.
 - E.g., Change in expectations about future rents.

Alternative view: credit expansion + upward sloping supply (imperfect rental market).

48 / 101

May 2022

- Any intermediate combination of upward sloping supply and supply shift also possible.
 - To separate role of credit from other shocks, need a way to **identify slope** of supply curve.

48 / 101

May 2022

Favilukis, Ludvigson, Van Nieuwerburgh (2016)

- Large scale heterogeneous agent life-cycle model with idio + aggregate shocks.
- Financial market liberalization (modeled as increase in LTV ratio) can explain housing boom.
- Two separate contributions of LTV relaxation:
 - Increase in collateral value.
 - Fall in risk premia due to improved risk sharing.
- Risk sharing result likely depends on how mortgage contract is modeled.
 - Hurst and Stafford (2004) show this is an important margin.
 - FLVN use one-period debt, ideal for consumption smoothing in normal times/boom.
 - With realistic debt that is long-term, costly to refinance, risk-sharing impact may be smaller.

Empirical Overview

- Use three off-the-shelf empirical approaches to estimate causal effect of credit supply on price-rent ratio and homeownership rate.
 - Loutskina and Strahan (2015): Exploit differential city-level exposure to national changes in conforming loan limits.
 - 2. **Di Maggio and Kermani (2017):** Exploit federal preemption of national banks from local anti-predatory-lending laws in 2004.
 - 3. **Mian and Sufi (2019)**: Exploit differential city-level exposure to private-label securitization expansion.
- Robustness to alternative methodologies assuages concerns for any one approach.
 - Each instrument has different identification assumptions.
 - Operate on prime (#1) vs. riskier (#2, #3) segments of the market.

Data

- CBSA-Level Panel 1990-2017
- Prices: CoreLogic Repeat Sale HPI
- Rents: CBRE Economic Advisors Torto-Wheaton Index (CBSA)
 - High-quality repeat rent index for multi-family (single family index behaves similarly).
 - Measures rent commanded by newly rented unit.
- Homeownership Rate: Census Housing and Vacancy Survey
 - CBSA definitions change over time. Drop periods where definitions change.
 - Use state data with fixed definitions as robustness check.
- Credit: HMDA (volume of loans).

Empirical Approach 1: Conforming Loan Limit Exposure

- Credit shock: Loutskina and Strahan (2015)
 - CLL: Max loan size eligible for GSE subsidy, for most part changes nation-wide.
 - Idea: Change in conforming loan limit has more bite in cities with more loans near CLL.
 - Instruments: Frac. originations within 5% of CLL at $t-1 \times \%$ change in CLL, interaction of this with Saiz instrument (effect of share-shift estimated for supply elasticity that maximizes power)
- Identifying assumption: No non-credit shock that varies with CLL in time series and affects more exposed cities in cross section.
- ▶ Panel IV Local Projection: for k = 0, ..., 5,

$$\log(outcome_{i,t+k}) = \xi_i + \psi_t + \beta_k \Delta \log(\widehat{credit}_{i,t}) + \theta X_{i,t} + \epsilon_{i,t}$$
$$\Delta \log(credit_{i,t}) = \phi_i + \chi_t + Z_{i,t} + \omega X_{i,t} + e_{i,t}$$

52 / 101

Empirical Approach 1: Conforming Loan Limit Exposure

- Credit shock: Loutskina and Strahan (2015)
 - CLL: Max loan size eligible for GSE subsidy, for most part changes nation-wide.
 - Idea: Change in conforming loan limit has more bite in cities with more loans near CLL.
 - Instruments: Frac. originations within 5% of CLL at $t-1 \times \%$ change in CLL, interaction of this with Saiz instrument (effect of share-shift estimated for supply elasticity that maximizes power)
- Identifying assumption: No non-credit shock that varies with CLL in time series and affects more exposed cities in cross section.
- ▶ Panel IV Local Projection: for k = 0, ..., 5,

$$\log(\textit{outcome}_{i,t+k}) = \xi_i + \psi_t + \beta_k \Delta \log(\widehat{\textit{credit}}_{i,t}) + \theta X_{i,t} + \epsilon_{i,t}$$
$$\Delta \log(\textit{credit}_{i,t}) = \phi_i + \chi_t + Z_{i,t} + \omega X_{i,t} + e_{i,t}$$

where X_t includes $Fraction_{i,t-1}$ as well as lags of instruments and credit variable.

CLL Impulse Response: Credit Shock (Panel Local Projection IV)

- ightharpoonup Price-rent ratio peaks at 0.47, compared to 0.1 for HOR. Naive ratios range from 3 to ∞ .
- ▶ PR ratio combination of price increase (\sim 76% peak) and rent increase (\sim 26% peak).

CLL Impulse Response: Credit Shock (Panel Local Projection IV)

- Can estimate slope directly by instrumenting price-rent with HOR as outcome.
 - Compute inverse ratio because HOR is weak instrument.

54 / 101

CLL Impulse Response: Credit Shock (Panel Local Projection IV)

- ightharpoonup Point estimates range from 4.2 to ∞ depending on horizon.
 - 95% CI lower bound ranges from 1.8 to 8.3.
 - 95% CI upper bound is ∞ because cannot reject zero.

Alternate Empirical Approaches

- ▶ **Di Maggio and Kermani (2017)**: Preemption of state anti-predatory-lending laws (APLs).
 - 2004 OCC preemption allows national banks to expand credit to risky borrowers.
 - Compare across states based on presence of APL and across cities within states based on OCC-regulated-bank market share.
- ▶ Mian and Sufi (2019): City-level exposure to expansion in private-label securitization.
 - Variation across cities based on funding structure (non-core liabilities) of local banks.
- Despite different identification assumptions and variation that expands credit to riskier borrowers, both approaches yield similar slope estimates.
 - Di Maggio and Kermani: "naive" slope estimates of 3.4 6.7.
 - Mian and Sufi: "naive" slope estimates of 3.0 4.5.
 - Complementary empirical approaches reinforce confidence in this moment.

Modeling Credit and House Prices

- ▶ Three factors generate strong house price response to credit in models:
 - 1. Frictions on trade with unconstrained owners of rental properties (landlords).
 - 2. Frictions on trade with unconstrained savers.
 - 3. Latent demand for credit.
- ▶ Items 1. and 2. relate to supply slope, identified by our empirical moment.
 - Single moment does not pin down relative frictions across margins.
 - We fully shut down saver margin, which occurs (unrealistically) along intensive margin.
 - Relaxing this assumption doesn't overturn results (see paper).
- ▶ Item 3. relates to gap between mortgage rate and borrower's reservation rate.
 - Influences size of demand shift following credit shock, rather than slope of supply.
- Credit strongly affects house prices only if all three factors are present.

Model Overview

- ▶ Adaptation of Greenwald (2018) to allow endogenous rental market.
- ► Endowment economy, endogenous investment in housing stock.
- ► Credit + rental market ⇒ borrowers (B), landlords (L), savers (S).
- ► Realistic mortgages ⇒ long term, fixed-rate, prepayable.
 - Loan-to-value (LTV) and payment-to-income (PTI) limits at origination only.
- Main modeling contribution: borrower and landlord heterogeneity.
 - Without any heterogeneity, 0% or 100% home ownership.
 - How heterogeneity falls on borrowers vs. landlords determines slope of demand vs. supply.

57 / 101

Demographics and Preferences

- Three types: borrowers (B), landlords (L), savers (S).
 - Borrowers: consume owned and rented housing, borrow in mortgages ($\beta_B < \beta_S$).
 - Landlords: risk-neutral, own housing to rent to borrowers (extension: landlord mortgages too).
 - Savers: finance borrower mortgages (extension: saver market integrated not segmented).
- Preferences:

$$\begin{split} & V_{i,t}^B = \log\left(c_{B,t}^{1-\xi}h_{B,t}^\xi\right) + \beta_B E_t V_{i,t+1}^B \\ & V_{i,t}^L = c_{i,t}^L + \beta_L E_t V_{i,t+1}^L \\ & V_{i,t}^S = \log\left(c_{S,t}^{1-\xi}h_{S,t}^\xi\right) + \beta_S E_t V_{i,t+1}^S \end{split}$$

ightharpoonup Perfect risk sharing within each type \implies aggregation.

Housing Technology

- Housing asset: Divisible, requires maintenance cost, owned by borrowers or landlords.
- Produced by construction firms using investment of the nondurable good (Z_t) and land (L_t) , where a fixed amount of land permits \bar{L} are issued each period.
- Construction firm's problem:

$$\max_{L_t, Z_t} p_t L_t^{\varphi} Z_t^{1-\varphi} - p_{L,t} L_t - Z_t$$

▶ Implies elasticity of investment to prices of $\varphi/(1-\varphi)$.

Heterogeneity

- Implementation of borrower and landlord heterogeneity:
 - Borrower i gets additional benefit $\omega_{i,t}^{\mathcal{B}} rent_t H_{i,t}$ from ownership, where $\omega_{i,t}^{\mathcal{B}} \stackrel{iid}{\sim} \Gamma_{\omega,\mathcal{B}}$.
 - Landlords get additional benefit $\omega_{j,t}^L rent_t H_{j,t}$ from ownership for property j, where $\omega_{j,t}^L \stackrel{iid}{\sim} \Gamma_{\omega,L}$.
- ▶ Borrower interpretation: Variation in life cycle, preferences, credit score, ability to come up with down payment, etc.
- Landlord interpretation: Variation in rental suitability by property/geography.
 - Implicit assumption: New construction has same dist of "rentability" as existing stock.
- lacksquare Owned housing is reallocated to best suited agents of each type: Own if $\omega_{i,t}^j \geq \bar{\omega}_t^j$.

• Key optimality conditions ($C_t = \mu_t F_t^{LTV} \theta_t^{LTV}$):

$$p_t^{\text{Demand}} = \underbrace{\left(1 - \mathcal{C}_t\right)^{-1}}_{\text{credit conditions}} E_t \bigg\{ \Lambda_{t+1}^B \bigg[\underbrace{\bar{\omega}_t^B + \text{rent}_{t+1}}_{\text{housing services}} + \underbrace{\left(1 - \delta - (1 - \rho_{t+1})\mathcal{C}_{t+1}\right) p_{t+1}}_{\text{continuation value}} \bigg] \bigg\}$$

$$p_t^{\mathsf{Supply}} = E_t \left\{ \Lambda_{t+1}^L \left[\underbrace{\bar{\omega}_t^L + \mathsf{rent}_{t+1}}_{\mathsf{housing services}} + \underbrace{\left(1 - \delta \right) p_{t+1}}_{\mathsf{continuation value}} \right] \right\}$$

▶ At equilibrium, $(\bar{\omega}_t^B, \bar{\omega}_t^L)$ ensure $p_t^{\text{Demand}} = p_t^{\text{Supply}}$ and $H_t^B + H_t^L = \bar{H}_t$. where

$$H^B_t = \left(1 - \Gamma^B_\omega(\bar{\omega}^B_t)\right) \bar{H}_t, \qquad H^L_t = \left(1 - \Gamma^L_\omega(\bar{\omega}^L_t)\right) \bar{H}_t$$

 \blacktriangleright Key parameter is dispersion of Γ_{a}^{L} distribution (more dispersed \Longrightarrow more inelastic supply).

Daniel Greenwald 15.474: Credit and House Prices 61 / 101

Calibration Strategy

- Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

Calibration Strategy

- Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

Calibration Strategy

- Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

- Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.

62 / 101

May 2022

Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

- Identification
- Model change in CLL as shock to real mortgage spreads for borrowers.
- Choose $\sigma_{\omega,L}$, along with size and persistence of shock, to minimize distance from empirical Loutskina-Strahan price-rent and homeownership IRFs.
- Fit in years 2-5 since our model lacks frictions required for hump-shaped response.

(a) Price-Rent Ratio

(b) Homeownership Rate

- Identification
- Requires substantial deviation from perfect rental markets.
- Benchmark has price response close to Full Segmentation model, but larger homeownership response.
- Estimated subsidy is 17bp, compared to 10bp 24bp range in literature (Adelino et al. 2012).

(a) Price-Rent Ratio

(b) Homeownership Rate

- ► Identification
- For bands, turn to inverse slope estimates.
 - Characterizes joint uncertainy, drops nuisance parameter of shock size.
 - Fit upper and lower confidence interval bounds.

(a) Inverse Ratio (Bands)

(b) In

(b) Inverse Ratio (Model Comparison)

- ▶ Identification
- Provides lower bound for frictions, cannot reject Full Segmentation.
- Can easily reject No Segmentation model.
- ightharpoonup Directly estimating $\sigma_{\omega,L}$ to match ratio point estimates would yield much steeper slope.

(b) Inverse Ratio (Model Comparison)

- Credit expansion: Increase max LTV from 85% to 99%, max PTI from 36% to 65%.
- ▶ Start in 1998 Q1, surprise reversal in 2007 Q1, compute nonlinear perfect foresight paths.

- ▶ Benchmark: Credit explains 34% of peak price-rent increase, 51% of peak LTI increase.
 - Using lower bound for slope, explains 26% of rise in price-rent, 46% of rise in LTI.
- ▶ Perfect rental markets: Credit explains -1% of price-rent, only 31% of peak LTI increase.

- ▶ Benchmark closer to complete segmentation: 38% of price-rent, 53% of peak LTI increase.
- ▶ But Benchmark allows for nontrivial movement in homeownership.

- Adding 2ppt drop in mortgage rates, we can explain 72% of the rise in price-to-rent ratios and 80% of the rise in loan-to-income ratios, and 53% of the rise in homeownership.
 - Lower bound slope explains 56% of rise in price-rent, 70% of rise in LTI, 135% of rise in HOR.
 - Upper bound (Full Seg) explains 82% of rise in price-rent, 86% of rise in LTI, 0% of rise in HOR.

- Contrast to 4% of rise in price-rent ratios and 38% of rise in LTI under No Segmentation.
- Extremely favorable credit terms without price appreciation leads to rise in homeownership 353% that of the data.

Boom Counterfactuals: Benchmark Model

- Add observed fall in interest rates, then use demand and supply shocks (shifts in means of $\Gamma_{\omega,B}$, $\Gamma_{\omega,L}$ to exactly explain rise in price-rent and homeownership).
- ► To capture bust, return credit limits to baseline, apply (i) 3% fall in mortgage rates and landlord discount rates; (ii) exclude 10% of borrowers from credit market.

Boom Counterfactuals: Benchmark Model

- Now **removing** credit expansion kills **55%** of boom in price-rent, **74%** of boom in LTI.
- Larger because of nonlinear interactions between credit and other shocks boosting house prices (Greenwald, 2018).
- ▶ Implies macroprudential, monetary policy can be effective at limiting house price booms.

Boom Counterfactuals: Benchmark Model

69 / 101

- ► Under No Segmentation, removing credit relaxation would remove 5% of boom in price-rent, 50% of boom in LTI.
- Difficult to distinguish using macro data alone, need IV estimates to tell whether macroprudential policy works.

Model Extensions: Landlord Credit

- So far, have assumed landlords don't use credit.
- If landlords used credit, expansion would cause shift in the supply curve.
 - Alternative explanation for concurrent rise in price-rent and homeownership.

Model Extensions: Landlord Credit

- So far, have assumed landlords don't use credit.
- If landlords used credit, expansion would cause shift in the supply curve.
 - Alternative explanation for concurrent rise in price-rent and homeownership.
- ▶ Implementation: landlords can borrow with mortgage tech., 65% LTV limit at origination.
- New equilibrium condition $(C_{L,t} = \mu_{L,t}\theta^L)$

$$p_{t}^{\text{Supply}} = \underbrace{\left(1 - \mathcal{C}_{L,t}\right)^{-1}}_{\text{credit conditions}} E_{t} \left\{ \Lambda_{t+1}^{L} \left[\underbrace{\bar{\omega}_{t}^{L} + \text{rent}_{t+1}}_{\text{housing services}} + \underbrace{\left(1 - \delta - (1 - \rho_{t+1})\mathcal{C}_{L,t+1}\right) p_{t+1}}_{\text{continuation value}} \right] \right\}$$

allows credit to directly influence supply.

Model Extensions: Landlord Credit

- Impose same mortgage spread shock, this time on both borrower and landlord mortgages.
- ► For same parameterization, strengthens movements in price-rent relative to homeownership.
 - Would generate strong effect of credit even with weaker segmentation.

Model Extensions: Flexible Saver Demand

- Next extension: relax assumption of fixed (segmented) saver demand.
- New equilibrium condition:

$$p_{t}^{Saver} = E_{t} \left\{ \Lambda_{t+1}^{S} \left[\underbrace{u_{h,t}^{S}/u_{c,t}^{S}}_{\text{housing services}} + \underbrace{\left(1 - \delta\right)p_{t+1}}_{\text{continuation value}} \right] \right\}$$

where saver housing $H_{S,t}$ must equalize saver and borrower/landlord prices.

- ▶ Because saver demand not directly influenced by credit, saver housing margin can also absorb effect of credit on house prices.
 - Same mechanism highlighted in Landvoigt, Piazzesi, and Schneider (2015).
- Adjustment occurs (unrealistically) along intensive margin due to divisible housing.
 - Typically true even in models with different housing sizes/types.

Model Extensions: Flexible Saver Demand

- Flexible saver demand would cut price-rent impact of mortgage spread shock in half.
- Recovering estimated elasticities would require even stronger rental market frictions.

Summary: Do Credit Conditions Move House Prices?

- What role did credit play in the housing boom and bust?
- ► Empirical results:
 - Larger, significant response of price-rent ratio to identified credit shocks, vs. smaller, insignificant response for homeownership.
- Quantitative model calibrated to match empirical findings (landlord supply elasticity):
 - Allows us to consider cases between fixed homeownership rate and perfect arbitrage.
 - Main finding: Credit conditions explain 34% 55% of price-rent growth during boom.
 - Frictions key to effectiveness of macroprudential/monetary policy in dampening price booms.
 - Extensions: Landlord credit (alternative comovement) and saver demand (need segmentation).
- Organizing framework/methodology we hope will be useful to future researchers.

Mortgage Submarkets

Allen and Greenwald (2022)

- Canada undergoing sustained housing boom.
- ▶ Below: Value-to-Income (VTI) ratios in Canada and US.

Allen and Greenwald (2022)

- Canadian policymakers have been actively using macroprudential tools.
- Ex: 2016 policy tightened payment-to-income (PTI) limits by over 16%.

Allen and Greenwald (2022)

- ▶ Good laboratory for theory (Justiniano et al. 2015, Greenwald 2018).
- Predict that tight PTI limits should be highly effective at dampening boom.

This Paper

- ▶ **Main question:** how can macroprudential policy effectively control a housing boom?
- Approach: develop a GE model with main policy tools (LTV, PTI limits) and a key institutional feature: segmented submarkets.
 - Government Insured market: low down payments, tight PTI.
 - Uninsured market: high down payments, loose PTI.
 - Not specific to Canada (e.g., FHA vs. Fannie/Freddie in the US housing boom).

Main insights:

- 1. Multi-market structure allows for larger housing booms due to market switching.
- 2. Substitution between markets dampens effectiveness of PTI policy.
- 3. Effects of LTV (down payment) policy depend crucially on which submarket is targeted.

Credit Limits

- Two credit limits applied at origination in submarket j:
 - 1. Loan-to-Value (LTV) limit: $m \leq \theta_i^{LTV} p^h h$.
 - 2. Payment-to-Income (PTI) limit: $qm \leq \theta_j^{PTI}y$, where q is coupon (interest + principal).
- Two submarkets:
 - 1. Insured Market: loose LTV limit ($\theta_l^{LTV} = 95\%$), tight PTI limit ($\theta_l^{PTI} = 44\%$).
 - 2. Uninsured Market: tight LTV limit ($\theta_{IJ}^{LTV}=80\%$), tight PTI limit ($\theta_{IJ}^{PTI}\sim\infty$).

Constraint Structure by Submarket

► Constraint space:

Constraint Structure by Submarket

Data equivalent:

Simple Model

One-time house purchase with quasi-linear preferences. Borrower maximizes

$$V_{o} = \max_{h} \underbrace{\alpha \log(h)}_{PV \text{ benefit}} - \underbrace{(h - \mu \bar{m}(h))}_{PV \text{ cost}}$$

where $\bar{m}(h)$ is debt limit and $\mu >$ 0 represents marginal value of credit.

Marginal benefit and cost

$$MB(h) = \alpha h^{-1}$$
 $MC(h) = 1 - \mu \bar{m}'(h)$

- Note: MC < 1 when $\mu > 0$ and **debt limit is increasing in** h.
- $lacktriangleq ar{m}'(h) > o$ when LTV-constrained $(ar{m} \propto h)$, not when PTI-constrained $(ar{m} \propto y)$.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing \impatient borrowers/patient savers.
- ► Mortgage debt ⇒ durable housing.
- ightharpoonup Realistic mortgages \Longrightarrow long-term, fixed-rate, renew with prob. ρ .
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- ▶ Borrowing ⇒ impatient borrowers/patient savers.

- Preferences:
$$V_{j,t} = \log(c_{j,t}/\chi_j) + \xi \log(h_{j,t}/\chi_j) - \eta_j \frac{(n_{j,t}/\chi_j)^{1+\varphi}}{1+\varphi} + \beta_j E_t V_{j,t+1}$$

- ► Mortgage debt ⇒ durable housing.
- ightharpoonup Realistic mortgages \Longrightarrow long-term, fixed-rate, renew with prob. ρ .
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- ▶ Borrowing ⇒ impatient borrowers/patient savers.
- Mortgage debt \improx durable housing.
 - Divisible, cannot change stock without renewing mortgage.
- Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- ightharpoonup Endogenous interest rates, output, inflation \implies labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing \iff impatient borrowers/patient savers.
- Mortgage debt durable housing.
- ▶ Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
 - At renewal, update balance and interest rate.
 - LTV + PTI limits imposed at origination only.
 - Borrowers choose submarket that gives them bigger loan.
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

- Extension of Greenwald (2018) allowing for multiple submarkets.
- Borrowing ⇒ impatient borrowers/patient savers.
- Mortgage debt mortgage debt mortgage debt mortgage debt
- ▶ Realistic mortgages \implies long-term, fixed-rate, renew with prob. ρ .
- ► Endogenous interest rates, output, inflation ⇒ labor supply, sticky prices, Taylor rule.

Representative borrower housing optimality condition:

$$p_t^h = \frac{u_{b,t}^h/u_{b,t}^c + E_t \left\{ \Lambda_{b,t+1} p_{t+1}^h \left[1 - \delta - (1-\rho)C_{t+1} \right] \right\}}{1 - C_t}$$

- \triangleright C_t is population average of $\mu_t \bar{m}_t'(p^h h)$, generalization of simple example.
 - Unconstrained borrowers: $C_t = \mu_t = 0$, p_t^h = PV of implied rents
 - Single market, LTV constraint: $C_t = \mu_t \theta^{\text{LTV}}$
 - Single market, LTV and PTI constraints: $C_t = \mu_t F_t^{LTV} \theta^{LTV}$
 - Dual market, LTV and PTI constraints: $C_t = \mu_t \left(F_{U,t}^{LTV} \theta_U^{LTV} + F_{I,t}^{LTV} \theta_I^{LTV} \right)$
- Housing demand increases when more borrowers are LTV-constrained at the margin.
 - Uninsured PTI limits are loose \implies increase in uninsured share can boost house prices.

Simple Model: Baseline

- ▶ Insured Market: debt limit increasing with slope 0.95 until PTI limit reached.
- ▶ Uninsured Market: debt limit increasing with slope o.8 indefinitely.
- Overall limit is upper envelope. Borrower switches market at green line in Panel (b).

Simple Model: Baseline

- For housing demand, compare marginal benefit to marginal cost $(1 \mu \bar{m}'(h))$.
- ▶ Single market: switch to PTI-constrained causes discrete drop in $\bar{m}'(h)$, jump in MC.
- Many borrowers have MC = MB at point where both constraints bind (Greenwald, 2018).

Simple Model: Baseline

- ▶ Dual market: $\bar{m}'(h) \uparrow$ when borrowers switch to **Uninsured**, becoming LTV-constrained.
- Causes marginal cost to drop, allowing for two intersections with MB (local optima).
- This parameterization: lower (Insured) optimum is higher.

Simple Model: Housing Boom

- Now consider boom scenario with increased housing preference (α). Shifts MB curve up.
- Because of discontinuous jump in MC, lower (Insured) local optimum unchanged.
- In single market setting, this implies that PTI limits can dampen housing demand in booms.

Simple Model: Housing Boom

- Dual market: ranking of local optima can flip, borrowers switch to Uninsured market.
- Causes large increase in housing demand and loan size.
- Implies PTI limits less effective at dampening booms in dual market setting.

Full Model: Housing Boom

- ▶ Generate boom using anticipated increase in housing utility.
 - Compare Benchmark to economies with only insured or uninsured sectors.
- ▶ With two markets, substitution allows for much higher house price and credit growth.
 - Closer to world with all uninsured than all insured, even though > 80% insured in steady state.

Aside: Parallel with US Boom/Bust

- ▶ Below: share of loans securitized by Ginnie Mae (FHA + VA).
 - Like **Insured** sector. Low down payments (3.5%) + strict income reqs.
- ▶ Below: huge substitution away from FHA + VA during housing boom.

Source: HMDA

May 2022

Simple Model: Change in PTI Limit

- Tightening PTI limit reduces maximum Insured loan size and pushes switch point left.
- Dual market: substitution into Uninsured occurs earlier, mitigates credit tightening.

Simple Model: Change in PTI Limit

- ► Single market: MC now jumps at lower value, pushes housing demand down.
- Implies tightening PTI is effective macroprudential policy to dampen housing demand.

Simple Model: Change in PTI Limit

- Dual market: reduces NPVs in Insured sector, leading borrowers to switch to Uninsured.
- Market switchers **increase** housing and debt demand, weakening effects of policy.

Full Model: Change in PTI Limit

- ightharpoonup October 2016: new rule that PTI ratios must be evaluated at "posted" rate (\sim 200bp higher).
- ► Effectively 16.5% tightening of PTI limit in **Insured market only**
- ► Compare benchmark to economy with single (insured) market.

Full Model: Change in PTI Limit

- Single market (No Uninsured) economy: large decrease in house prices and debt.
- Dual market environment cuts effect of policy by more than half.
- Large substitution out toward **Uninsured** market boosts housing demand and credit.

► Tight θ_{I}^{LTV} reduces debt limits, moving constraint switching point right.

- Single market: shift in MC jump to the right can increase housing demand.
- Implies LTV tightening is less effective policy for dampening house price growth.

- Dual market: basically the same effect.
- LTV limits are even tighter in **Uninsured** market, so outside option not relevant.

95 / 101

May 2022

lacktriangle Borrowers unable to evade tightening by switching markets \implies substantial effect on debt.

- In contrast, tightening **Uninsured** LTV limit can cause borrowers to switch to **Insured**.
- ▶ If so, dramatically reduce housing demand. Potentially effective way to dampen HP growth.

- ▶ But switch largely occurs along flat (PTI-constrained) part of the overall debt limit.
- Overall: tight $\theta_{II}^{LTV} \Longrightarrow$ large effect on housing demand, small effect on debt.

Full Model: Shock to LTV Limits

- Full model: reduce each LTV limit by 10ppt (Insured: 95% \rightarrow 85%, Uninsured: 80% \rightarrow 70%).
- Low LTV (I): large effect on debt, almost no impact on house prices.
- Low LTV (U): large effect on prices, 4x smaller impact on debt.

Summary: Multiple Submarkets

- GE model with key macroprudential tools and segmented submarkets.
- Dual markets allow larger booms holding debt limit ratios fixed.
 - Borrowers switch into **Uninsured** market.
 - Collateral incentives (low MC) lead to high housing demand.
- Dual market weakens effectiveness of PTI policy.
 - Single market: sharply reduces housing and credit demand.
 - Dual market: borrowers switching to **Uninsured** market can **increase** demand.
- Effects of LTV tightening depend on targeted submarket:
 - Insured: large reduction in debt, little effect on house prices.
 - Uninsured: smaller decline in debt, large fall in house prices.

Conclusion: Credit and House Prices

- When does credit matter for house prices?
 - When "supply" from unconstrained agents (landlords, savers) sufficiently segmented.
 - Strong frictions supported by empirical evidence.
- How did credit drive the 2000s boom bust?
 - Key change is large relaxation of PTI limits.
 - PTI relaxation directly increases prices, amplifies effect of expectations.
- Effects of macroprudential policy depend on submarket structure.
- Lots of room for continued research!