Is Housing the Business Cycle?
A Multi-resolution Analysis for OECD Countries

By Yuting Huang, Qiang Li, Kim Hiang Liow, and Xiaoxia Zhou

Discussion: Daniel Greenwald

MIT Sloan

AREUEA Meetings, January 2019
Summary

▶ Question: do measures of residential investment lead the business cycle, and if so, why?

▶ Addresses debate in the literature:
 - Leamer: housing is key leading indicator of business cycle.
 - Kydland, Rupert, Sustek: housing variables may be confounded with interest rates.

▶ Approach: decompose variables into cycles using wavelets.
 - Study correlations, estimate SVARs on a number of OECD countries.

▶ Main results:
 - Housing variables lead GDP.
 - SVARs: substantial variation explained by shocks that drive housing independent of interest rates.
Evaluation

▶ Question is important: does housing drive/predict the business cycle, or is it just picking up effect of interest rate changes faster?

- Kydland, Rupert, Sustek: housing starts or permits, not investment, predictive in most countries.
- Argue that all investment responds at the same time, but housing starts show up before nonresidential investment is completed.

▶ Wavelet decomposition seems like a novel and interesting tool.

▶ My comments:

1. Is a two-sided filter safe for lead-lag correlations?
2. Recursive identification scheme for SVARs might benefit from alternative interpretation.
3. Could try local projections as a robustness check.
Wavelet Filter: Correlations

Wavelet filter decomposes series into a trend component and many cycle components:

\[x_t = S_t + D_{1,t} + \cdots + D_{J,t}. \]

- **Multiresolution** ➞ different cycle terms correspond to different frequency bands.
 - Advantage over e.g., HP filter which only produces a single cycle measure.
 - Overall, seems like a very useful tool for analysis of economic time series.

Possible concern for this specification: filter appears **two sided**.

- Incorporates future information into today’s cycle estimates, could affect lead/lag?
- Part of Leamer’s point is that housing variables offer best indication of cycle **given today’s data**.
- Is it possible to use wavelets but restrict to one-sided information?
Wavelet Filter: Correlations

Wavelet filter decomposes series into a trend component and many cycle components:

\[x_t = S_t + \underbrace{D_{1,t} + \cdots + D_{J,t}}_{\text{cycle}}. \]

Multiresolution \(\Rightarrow \) different cycle terms correspond to different frequency bands.

- Advantage over e.g., HP filter which only produces a single cycle measure.
- Overall, seems like a very useful tool for analysis of economic time series.

Possible concern for this specification: filter appears **two sided**.

- Incorporates future information into today’s cycle estimates, could affect lead/lag?
- Part of Leamer’s point is that housing variables offer best indication of cycle **given today’s data**.
- Is it possible to use wavelets but restrict to one-sided information?
SVAR Identification

- Structural VAR (SVAR) takes the form: \(X_t = A_1 X_{t-1} + \ldots + A_k X_{t-k} + B e_t \)

- “Structure” comes from identification of \(B \) (and structural shocks \(e_t \)).
 - Not a product of VAR estimation, needs additional assumptions.

- Authors use recursive identification scheme (lower triangular \(B \)):
 - Shock \(j \) out of \(n \) can affect variables \(j, \ldots, n \) on impact, but not variables \(1, \ldots, j - 1 \).
 - Essentially a timing assumption about which variables can affect each other within the period.

- Authors motivate SVARs using different proposed causal channels through which housing affects real activity, inspired by Mishkin (2007).
 - If causal chain runs from rates → housing starts → GDP, are we sure each step takes 1Q?
 - If housing variables move on their own, do interest rates react within the quarter?
SVAR Identification

- Structural VAR (SVAR) takes the form: \[X_t = A_1X_{t-1} + \ldots + A_kX_{t-k} + Be_t \]

- “Structure” comes from identification of \(B \) (and structural shocks \(e_t \)).
 - Not a product of VAR estimation, needs additional assumptions.

- Authors use recursive identification scheme (lower triangular \(B \)):
 - Shock \(j \) out of \(n \) can affect variables \(j, \ldots, n \) on impact, but not variables 1, \ldots, \(j-1 \).
 - Essentially a **timing** assumption about which variables can affect each other within the period.

- Authors motivate SVARs using different proposed causal channels through which housing affects real activity, inspired by Mishkin (2007).
 - If causal chain runs from rates → housing starts → GDP, are we sure each step takes 1Q?
 - If housing variables move on their own, do interest rates react within the quarter?
SVAR Identification

- Structural VAR (SVAR) takes the form: \(X_t = A_1 X_{t-1} + \ldots + A_k X_{t-k} + B e_t \)

- “Structure” comes from identification of \(B \) (and structural shocks \(e_t \)).
 - Not a product of VAR estimation, needs additional assumptions.

- Authors use recursive identification scheme (lower triangular \(B \)):
 - Shock \(j \) out of \(n \) can affect variables \(j, \ldots, n \) on impact, but not variables \(1, \ldots, j - 1 \).
 - Essentially a **timing** assumption about which variables can affect each other within the period.

- Authors motivate SVARs using different proposed **causal** channels through which housing affects real activity, inspired by Mishkin (2007).
 - If causal chain runs from rates \(\rightarrow \) housing starts \(\rightarrow \) GDP, are we sure each step takes 1Q?
 - If housing variables move on their own, do interest rates react within the quarter?
SVAR Identification: My Take

- Alternative interpretation: recursive ordering can be thought of as test of Kydland, Rupert, Sustek hypothesis that housing variables are driven by interest rates.

- Ordering housing after interest rates means that “housing shock” drives contemporaneous movement in housing uncorrelated with current changes in interest rates.
 - Conservative assumption, could be purging actual “housing” shocks that are correlated with interest rates through reverse causality.
 - But if remaining shock is still important, diminishes KRS critique.

- This already seems close to what the authors have in mind, but has different implications for what variables to include and ordering.
 - Instead of “causal pathway” just put variables you want to control for (interest rates) first, then housing variable, then other variables important to dynamics.
SVAR Identification: My Take

- Alternative interpretation: recursive ordering can be thought of as a test of Kydland, Rupert, Sustek hypothesis that housing variables are driven by interest rates.

- Ordering housing after interest rates means that “housing shock” drives contemporaneous movement in housing uncorrelated with current changes in interest rates.
 - Conservative assumption, could be purging actual “housing” shocks that are correlated with interest rates through reverse causality.
 - But if remaining shock is still important, diminishes KRS critique.

- This already seems close to what the authors have in mind, but has different implications for what variables to include and ordering.
 - Instead of “causal pathway” just put variables you want to control for (interest rates) first, then housing variable, then other variables important to dynamics.
Alternative: Local Projections

▶ As authors mention, SVAR analysis is only correct if true data generating process follows a VAR and the identifying assumptions for B.

▶ An alternative approach for robustness could be the local projections of Jorda (2005)

$$y_{t+h} = \text{const} + \beta \text{housing}_t + \theta(L) \text{rates}_t + \gamma' Z_{t-1} + \epsilon_{t,t+h}$$

where housing$_t$ and rates$_t$ are changes in housing and interest rate variables, and Z_{t-1} are controls (including y_{t-1}).

▶ Coefficient of interest: β.

▶ Should be more robust if VAR is misspecified, allows you to flexibly control for interest rate.
Alternative: Local Projections

- My (crude) attempt: use $\Delta \log \text{permits}_t$ as housing var, change in 3-Mo rate (+3 lags) and FRM rate as interest rate vars, put all other plotted variables in Z_{t-1}.

[Graphs showing relationships between various economic indicators and permits over time.]
Alternative: Local Projections

- Finding that change in permits predicts GDP controlling for the interest rate holds up.
Conclusion

- Interesting paper using novel tool (wavelet decomposition) to take on important question.

- Main suggestions:
 - Check influence of two-sided filter.
 - Add more explanation of why wavelet decomposition differs from existing methods.
 - Directly describe SVAR identification assumption in terms of timing.