Monetary Policy and Employment: Do Financial Constraints Matter?

By Julien Champagne and Émilien Gouin-Bonenfant

Wake Forest Empirical Macro Workshop

Discussion by Dan Greenwald

Summary

- Question: do constrained firms react (adjust employment) more or less in response to monetary policy shock?
- Approach: combine administrative data on Canadian SMEs with survey asking subset of firms about their credit use
 - Predict denial of credit in survey data
 - Use fitted value as proxy for constraint in full data
- Results: constraints amplify monetary policy
 - Indirect effect (via constraints) is 29% of employment response

Evaluation

- Overall approach is great
 - Trying to infer financial constraints from firm characteristics or financial conditions is difficult (see e.g., Kaplan and Zingales 1997)
 - Directly measuring constraints via survey is a big improvement
 - Using fitted values on a larger data set seems right to me
- I think that the share of constrained firms may be biased down
 - Survey question only catches denials, but there are other ways to be constrained
 - Underestimate consistent with some puzzling quantitative results

Basic idea

When choosing how much to borrow, firms set

$$MB(b) = MC(b) = r + \eta$$

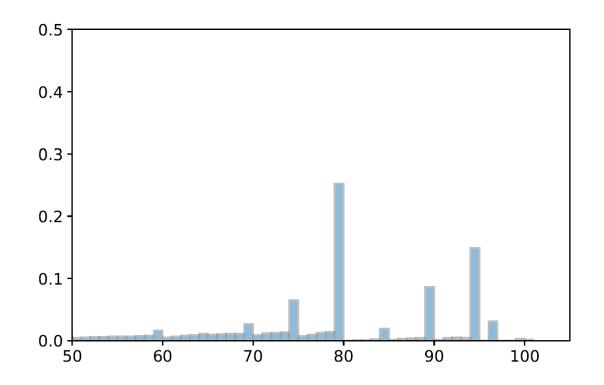
where b is the amount of debt, MB is marginal benefit, and MC is marginal cost

- Marginal cost of financing is the interest rate r plus a wedge η
- Example: debt B cannot exceed some constraint \bar{B}
 - Unconstrained firms: $MB(b^*) = r$ implies $b^* = MB^{-1}(r)$
 - Constrained firms: $b^* = \bar{b}$
 - Which firm reacts more is **ambiguous** $(\overline{b}'(r))$ vs. $(MB^{-1})'(r)$

Survey implementation

- We want to know if the wedge η exists (or if b at \overline{b})
- Survey not a perfect match for what we need
- What we have:
 - Did you apply for credit?
 - Why did you not apply?
 - Were you denied?
 - Why were you denied?
- The ideal question:
 - If offered additional credit at rate r, would you have taken it?

Measuring constraints



- Being denied credit seems sufficient for being constrained
 - But potentially not necessary
- If credit limits are known, then borrowers can go right up to the limit without being denied
 - These firms are constrained, but would not count toward p

Example from the mortgage market

- Right: distribution of LTV ratios on Fannie Mae mortgages
- Most borrowers end up at some institutional limit
 - Appear constrained
- But none of these borrowers are denied

Measuring constraints

- Being denied credit seems sufficient for being constrained
 - But potentially not necessary
- If credit limits are known, then borrowers can go right up to the limit without being denied
- Firms may be constrained by covenants
 - Covenants on existing debt can effectively limit firm borrowing
 - And can potentially amplify MP transmission (Greenwald 2019)
 - Not clear what firm would answer on survey if this was the case

Covenants

- Below: evidence from Greenwald (2019) that transmission varies by covenant structure
 - Interest coverage covenants very sensitive to interest rates

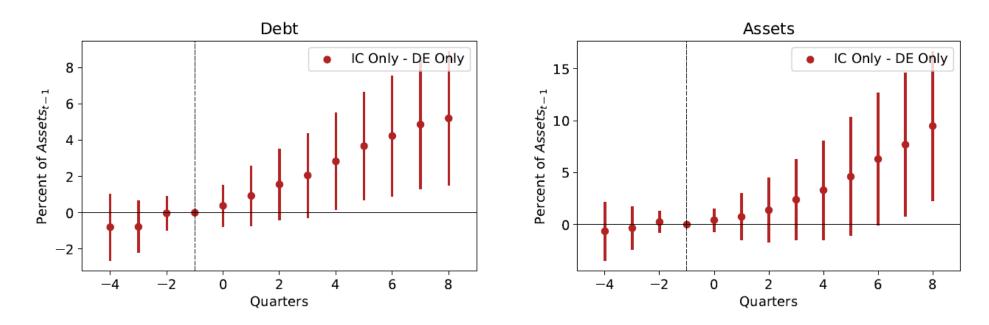
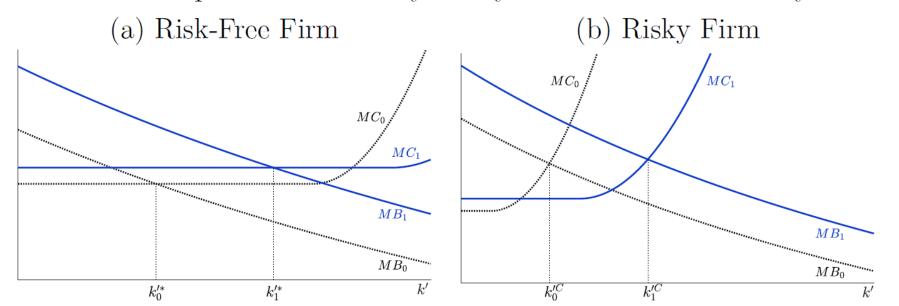


Figure 5: Estimated Response to Interest Rate ↓ 100bp by Covenant

Measuring constraints


- Being denied credit seems sufficient for being constrained
 - But potentially not necessary
- If credit limits are known, then borrowers can go right up to the limit without being denied
- Firms may be constrained by covenants
- Firms may face upward sloping interest rate schedule
 - Mechanism in Ottonello and Winberry (2020), BGG (1999), etc.
 - Firm is not literally constrained on quantity, but stops borrowing because of rising spreads

Upward sloping supply

- Below: plot from Ottonello and Winberry (2020)
- Upward sloping credit supply (marginal cost) as firm levers up can behave like constraint (via η)

FIGURE 2: Response to Monetary Policy for Risk-Free and Risky Firms

Regression magnitudes

- Authors predict denial of credit using linear prediction model (OLS)
- Resulting fitted value \hat{p} is the proxy for being financially constrained
- Missing values (firm is constrained but we measure p=0) will attenuate coefficients

Table 6: Determinants of credit constraints

Predictive variables	Coefficient	Standard error
Total liabilities	0.0136***	0.0026
Current liabilities	0.0058**	0.0025
Total assets	-0.0112^{***}	0.0031
Current assets	-0.0061**	0.0026
Revenue	-0.0236***	0.0073
Expense	0.0138*	0.0070
Age	-0.0080***	0.0020
Constant	0.0387***	0.0018

Regression magnitudes

- Regression magnitudes seem consistent with underestimate of constrained share (or else are puzzling)
- Example: let's double firm debt
 - Typical firm has ~50% leverage, so this is a big deal
 - Equivalent to adding 0.69 to log liabilities
 - Increases \hat{p} by $0.0136 \times 0.69 = 0.94\%$
 - For average firm, increases \hat{p} from 2.1% to just 3.04%
- Impact seems attenuated, possibly because truly constrained firms are appearing as zeros on the LHS

Monetary policy magnitudes

Main regression (simplified):

$$\bar{l}_{i,t} = \mu_{j,m} + \dots + \underbrace{\beta_d \varepsilon_t + \theta_d' z_{i,t} \varepsilon_t}_{\text{direct effect}} + \underbrace{\beta_{id} \hat{p}_{i,t} \varepsilon_t}_{\text{indirect effect}} + u_t$$

- Employment response: direct effect (71%), indirect effect (29%)
- Back of the envelope math (let's say employment moves by 1%)
 - Indirect effect of 0.29% is \bar{p} x (response if constrained)
 - \bar{p} is small (2.1%), so conditional response is huge
 - Constrained firms cut employment by extra 13.8% after 25bp shock

Conclusion

- Great methodology for measuring effect of financial constraints
 - Instead of guessing, let's ask firms!
 - Then create index for non-surveyed firms
- Survey design probably leads to underestimates of constrained
 - Index still seems valuable (similar to e.g., Whited-Wu)
 - But other magnitudes affected by bias (e.g., employment response of constrained to monetary policy)
- No reason to stop at monetary policy
 - Lots of interesting (and more powerful) shocks to investigate using this great data set!