Daniel Greenwald¹ Adam Guren²

¹NYU Stern

²Boston University and NBER

Spring 2024

- What role did credit play in the housing boom and bust?
 - Key to design of macroprudential policy.
- Divergent views in literature. Two prominent examples:
 - Favilukis-Ludvigson-Van Nieuwerburgh: Credit explains most (60%) of movement in prices
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.
- ▶ Key difference is **rental market**, where two polar assumptions used
 - Full segmentation: Fixed homeownership rate. Credit \rightarrow demand \rightarrow prices (e.g., FLVN).
 - **No segmentation**: Deep-pocketed landlords who do not use credit. When credit loosens, renters buy from their landlord, prices pinned down by PV of rents (e.g., KMV).
 - Actual economy likely somewhere between these extremes. But where?
- More generally: Extent to which **credit insensitive** agents absorb credit-driven demand.
 - Depends on degree of **segmentation** in housing markets
 - Unconstrained savers can play similar role unless their housing is segmented.

- What role did credit play in the housing boom and bust?
 - Key to design of macroprudential policy.
- Divergent views in literature. Two prominent examples:
 - Favilukis-Ludvigson-Van Nieuwerburgh: Credit explains most (60%) of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.
- Key difference is rental market, where two polar assumptions used:
 - Full segmentation: Fixed homeownership rate. Credit \rightarrow demand \rightarrow prices (e.g., FLVN).
 - **No segmentation**: Deep-pocketed landlords who do not use credit. When credit loosens, renters buy from their landlord, prices pinned down by PV of rents (e.g., KMV).
 - Actual economy likely somewhere between these extremes. But where?
- More generally: Extent to which credit insensitive agents absorb credit-driven demand.
 - Depends on degree of **segmentation** in housing markets
 - Unconstrained savers can play similar role unless their housing is segmented.

- What role did credit play in the housing boom and bust?
 - Key to design of macroprudential policy.
- Divergent views in literature. Two prominent examples:
 - Favilukis-Ludvigson-Van Nieuwerburgh: Credit explains most (60%) of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.
- Key difference is rental market, where two polar assumptions used:
 - **Full segmentation**: Fixed homeownership rate. Credit \rightarrow demand \rightarrow prices (e.g., FLVN).
 - **No segmentation**: Deep-pocketed landlords who do not use credit. When credit loosens, renters buy from their landlord, prices pinned down by PV of rents (e.g., KMV).
 - Actual economy likely somewhere between these extremes. But where?
- More generally: Extent to which **credit insensitive** agents absorb credit-driven demand.
 - Depends on degree of **segmentation** in housing markets
 - Unconstrained savers can play similar role unless their housing is segmented

- What role did credit play in the housing boom and bust?
 - Key to design of macroprudential policy.
- Divergent views in literature. Two prominent examples:
 - Favilukis-Ludvigson-Van Nieuwerburgh: Credit explains most (60%) of movement in prices.
 - Kaplan-Mitman-Violante: Credit had virtually no effect on prices.
- Key difference is rental market, where two polar assumptions used:
 - **Full segmentation**: Fixed homeownership rate. Credit \rightarrow demand \rightarrow prices (e.g., FLVN).
 - **No segmentation**: Deep-pocketed landlords who do not use credit. When credit loosens, renters buy from their landlord, prices pinned down by PV of rents (e.g., KMV).
 - Actual economy likely somewhere between these extremes. But where?
- ▶ More generally: Extent to which **credit insensitive** agents absorb credit-driven demand.
 - Depends on degree of **segmentation** in housing markets.
 - **Unconstrained savers** can play similar role unless their housing is segmented.

What We Do In This Paper

- Main Question: How sensitive are house prices to credit standards and interest rates?
- Approach: Tractable macro-housing framework + novel empirical estimates.
 - Introduce model with arbitrary degree of segmentation through heterogeneity, nesting polar cases.
 - New empirical moment for calibration: Relative causal elasticity of price-rent vs. homeownership to credit supply shock is key determinant of degree of segmentation.
 - Calibrate model to match empirical findings, then decompose boom-bust.

Main Findings:

- Price-rent ratio responds at least 4× more to identified credit shock than homeownership.
- Change in credit standards as in 2000s explains 32% and 53% of price-rent rise.
- Close to full segmentation model, much stronger than no segmentation model.
- Findings matter for other shocks to demand for owner-occupied housing, e.g. foreclosures.

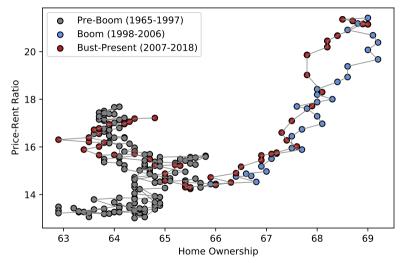
Literature Review

► Credit in the Boom-Bust: Favilukis Ludvigson Van Nieuwerburgh (2017), Garriga Hedlund (2017, 2018), Garriga Manuelli Peralta-Alva (2019), Greenwald (2018), Guren Krishnamurthy McQuade (2020), Justiniano Primiceri Tambalotti (2015, 2018), Kaplan Mitman Violante (2019), Kiyotaki Michaelides Nikolov (2011), Landvoigt, Piazzesi, and Schneider (2015).

Here: Common framework/methodology to resolve disparate results.

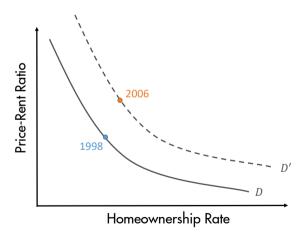
Empirical Credit Elasticities: Adelino Schoar Severino (2022), Di Maggio Kermani (2017), Favara Imbs (2015), Glaeser Gottlieb Gyourko (2012), Loutskina Strahan (2015), Mian Sufi (2019).

Here: Focus on homeownership rate as key response variable (alongside price).

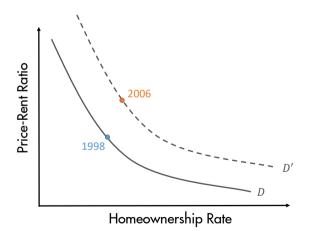

▶ Housing DSGE Models: Campbell, Hercowitz (2005), Eggertsson, Krugman (2012), Garriga, Kydland, Sustek (2015), Ghent (2012), Kiyotaki, Moore (1997), Iacoviello (2005), Iacoviello, Neri (2011), Liu, Wang, Zha (2013), Monacelli (2008), Rognlie, Shleifer, Simsek (2015).

Here: Tractable model to capture joint dynamics of homeownership and credit.

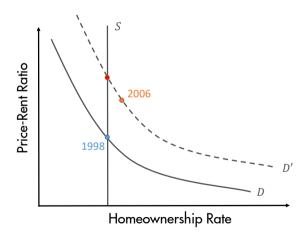
Outline

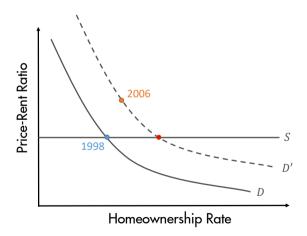

- Intuition: Modified Supply and Demand
- Empirics: Estimate Sensitivity
 - Data and Empirical Approach
 - Main Instrument (Loutskina-Strahan)
 - Alternate Instruments (Di Maggio-Kermani; Mian-Sufi)
- Theory: Quantify Impact
 - Calibrated Model: Focus on Rental Markets
 - Quantitative Results
 - Model Extensions
 - Landlord Credit
 - Saver Housing Demand

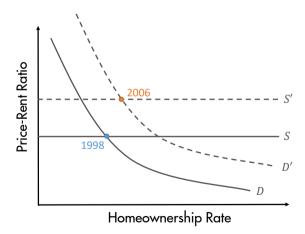
Time Series: Price-Rent Ratio vs. Home Ownership Rate

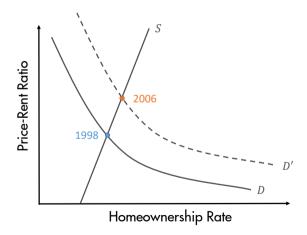


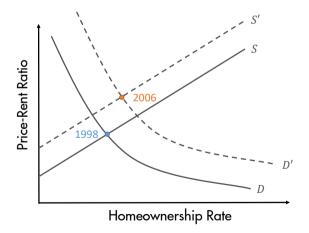
National data. Price-Rent: Flow of Funds, National Income and Product Accounts. Homeownership: Census.


▶ Plot demand for owner-occupied housing. Price-rent ratio and homeownership rate robust to changes in housing stock.


Credit expansion: Demand for owner-occupied housing shifts right.


► Fixed "supply" (homeownership rate) ⇒ all adjustment through price-rent ratio.


ightharpoonup Perfect rental market \implies all adjustment through homeownership rate.


- In this world, increase in price-rent requires **separate** shock to supply.
 - E.g., Change in expectations about future rents.

Alternative view: credit expansion + upward sloping supply (imperfect rental market).

- Any intermediate combination of upward sloping supply and supply shift also possible.
 - To separate role of credit from other shocks, need a way to identify slope of supply curve.

Empirical Estimates

Empirical Overview

- ► Use three off-the-shelf empirical approaches to estimate causal effect of credit supply on price-rent ratio and homeownership rate.
 - 1. **Loutskina and Strahan (2015)**: Exploit differential city-level exposure to national changes in conforming loan limits.
 - 2. **Di Maggio and Kermani (2017):** Exploit federal preemption of national banks from local anti-predatory-lending laws in 2004.
 - 3. **Mian and Sufi (2019)**: Exploit differential city-level exposure to private-label securitization expansion.
- Robustness to alternative methodologies assuages concerns for any one approach.
 - Each instrument has different identification assumptions.
 - Operate on prime (#1) vs. riskier (#2, #3) segments of the market.
- Results imply slope point estimates of at least 4 and often significantly higher. Cannot reject ∞ (full segmentation).

Data

- ► CBSA-Level Balanced Panel 1995-2017
- Prices: CoreLogic Repeat Sale HPI
- Rents: CBRE Economic Advisors Torto-Wheaton Index (CBSA)
 - High-quality repeat rent index for multi-family (single family index behaves similarly).
 - Measures rent commanded by newly rented unit.
- Homeownership Rate 1: Census Housing and Vacancy Survey
 - Noisy; CBSA definitions change over time. Drop affected CBSAs for balanced panel.
- ▶ Homeownership Rate 2: New measure based on microdata (Greenwald and Guren, 2023)
 - Zillow property records combined with Infutor address histories. Petails
 - Covers more cities with much less noise. Benchmark to decennial census to adjust for coverage.

Empirical Approach 1: Conforming Loan Limit Exposure

- Credit shock: Loutskina and Strahan (2015)
 - CLL: Max loan size eligible for GSE subsidy, for most part changes nation-wide.
 - Idea: Change in conforming loan limit has more bite in cities with more loans near CLL.
- ▶ Instrument: **fraction of originations** within 5% of CLL at $t 1 \times$ % **change in CLL**.
 - Control for fraction, CBSA, and time FE so identification is only from interaction.
 - Identifying assumption: no non-credit shock that varies with CLL in time series and affects more exposed cities in cross section.
- ▶ Panel local projection of reduced form: for k = 0, ..., 5 and outcome $\in \{PRR, HOR\}$,

$$\log(outcome_{i,t+k}) = \xi_i + \psi_t + \beta_k Z_{i,t} + \Theta X_{i,t} + \epsilon_{i,t}$$

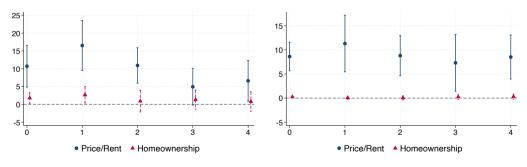
where X_t includes Fraction_{i,t-1} as well as one lag of instrument, Fraction, and outcome.

Empirical Approach 1: Conforming Loan Limit Exposure

- Credit shock: Loutskina and Strahan (2015)
 - CLL: Max loan size eligible for GSE subsidy, for most part changes nation-wide.
 - Idea: Change in conforming loan limit has more bite in cities with more loans near CLL.
- ▶ Instrument: **fraction of originations** within 5% of CLL at $t 1 \times \%$ **change in CLL**.
 - Control for fraction, CBSA, and time FE so identification is only from interaction.
 - Identifying assumption: no non-credit shock that varies with CLL in time series and affects more exposed cities in cross section.
- ▶ Panel local projection of reduced form: for k = 0, ..., 5 and outcome $\in \{PRR, HOR\}$,

$$\log(outcome_{i,t+k}) = \xi_i + \psi_t + \beta_k Z_{i,t} + \Theta X_{i,t} + \epsilon_{i,t}$$

where X_t includes Fraction_{i,t-1} as well as one lag of instrument, Fraction, and outcome.

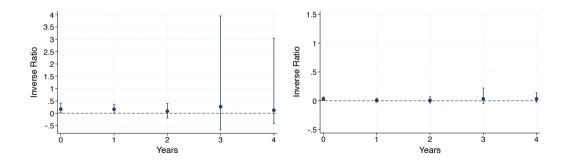

Empirical Approach 1: Conforming Loan Limit Exposure

- Credit shock: Loutskina and Strahan (2015)
 - CLL: Max loan size eligible for GSE subsidy, for most part changes nation-wide.
 - Idea: Change in conforming loan limit has more bite in cities with more loans near CLL.
- ▶ Instrument: **fraction of originations** within 5% of CLL at $t 1 \times \%$ **change in CLL**.
 - Control for fraction, CBSA, and time FE so identification is only from interaction.
 - Identifying assumption: no non-credit shock that varies with CLL in time series and affects more exposed cities in cross section.
- ▶ Panel local projection of reduced form: for k = 0, ..., 5 and $outcome \in \{PRR, HOR\}$,

$$\log(outcome_{i,t+k}) = \xi_i + \psi_t + \beta_k Z_{i,t} + \Theta X_{i,t} + \epsilon_{i,t}$$

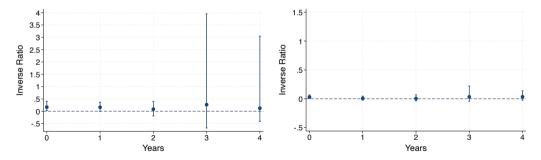
where X_t includes Fraction_{i,t-1} as well as one lag of instrument, Fraction, and outcome.

- Census: PRR point estimates from 10.7-16.5 in years 0-2, 4.9-6.6 in years 3 and 4, HOR 0.9-2.7 in years 0-2, 0.8-1.3 in years 3 and 4.
- ► GG Microdata: PRR point estimates **8.6-11.3** in years 0-2, **7.2-8.5** in years 3 and 4, HOR **0.05-0.3** in all years. Comparison



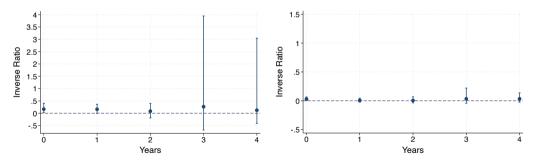
(a) Census Housing Vacancy Survey

(b) GG Microdata Homeownership Rate


- ▶ Plot inverse slope because HOR response insignificant ⇒ unbounded ratios.
 - Compute confidence interval using bootstrap.

(a) Census Housing Vacancy Survey

(b) GG Microdata Homeownership Rate Details


- Census: Ratio estimates range from 3.8 to ∞ , 6.0-11.8 in the years 0-2.
 - 95% CI lower bound ranges from 2.5-2.8 in years 0-2, 0.3 in years 3 and 4
 - 95% CI upper bound is ∞ because cannot reject zero.

(a) Census Housing Vacancy Survey

(b) GG Microdata Homeownership Rate Details

- GG Microdata: Ratio estimates range from 35-190 in years 0-2, 27-30 in years 3-5.
 - 95% CI lower bound is at least 14 in years 0-2, min of 4.5 in year 3.
 - To be conservative and obtain upper bound on effect of credit, we calibrate using Census.

(a) Census Housing Vacancy Survey

(b) GG Microdata Homeownership Rate Details

Alternate Empirical Approaches

- ▶ **Di Maggio and Kermani (2017)**: Preemption of state anti-predatory-lending laws (APLs).
 - 2004 OCC preemption allows national banks to expand credit to risky borrowers.
 - Compare across states based on presence of APL and across cities within states based on OCC-regulated-bank market share.
- ▶ Mian and Sufi (2019): City-level exposure to expansion in private-label securitization.
 - Variation across cities based on funding structure (non-core liabilities) of local banks.
- Despite different identification assumptions and variation that expands credit to riskier borrowers and only price data, both approaches yield similar slope estimates.
 - Di Maggio and Kermani: "naive" slope estimates of over 20 using GG microdata HOR,
 0.9-3 but very imprecise for Census data.
 - Mian and Sufi: "naive" slope estimates of at least 15 using GG microdata HOR,
 but very imprecise for Census data.
 - Complementary empirical approaches reinforce confidence in this moment.

Structural Model

Modeling Credit and House Prices

- ▶ Three factors generate strong house price response to credit in models:
 - 1. Frictions on trade with unconstrained owners of rental properties (landlords).
 - 2. Frictions on trade with unconstrained savers.
 - 3. Latent demand for credit.
- ▶ Items 1. and 2. relate to supply slope, identified by our empirical moment.
 - Single moment does not pin down relative frictions across margins.
 - We fully shut down saver margin, which occurs (unrealistically) along intensive margin.
 - Relaxing this assumption doesn't overturn results (see paper).
- Item 3. relates to gap between mortgage rate and borrower's reservation rate.
 - Influences size of demand shift following credit shock, rather than slope of supply.
- Credit strongly affects house prices only if all three factors are present.

Model Overview

- ▶ Adaptation of Greenwald (2018) to allow endogenous rental market.
- Endowment economy, endogenous investment in housing stock.
- ightharpoonup Credit + rental market \implies borrowers (B), landlords (L), savers (S).
- ► Realistic mortgages ⇒ long term, fixed-rate, prepayable.
 - Loan-to-value (LTV) and payment-to-income (PTI) limits at origination only.
- ► Main modeling contribution: **borrower and landlord heterogeneity**.
 - Without any heterogeneity, 0% or 100% home ownership.
 - How heterogeneity falls on borrowers vs. landlords determines slope of demand vs. supply.

Demographics and Preferences

- Three types: borrowers (B), landlords (L), savers (S).
 - Borrowers: consume owned and rented housing, borrow in mortgages ($\beta_B < \beta_S$).
 - Landlords: risk-neutral, own housing to rent to borrowers (extension: landlord mortgages too).
 - Savers: finance borrower mortgages, own fixed housing stock H_S (extension: trade housing).
- Preferences:

$$\begin{split} & V_{i,t}^B = \log\left(c_{B,t}^{1-\xi}h_{B,t}^\xi\right) + \beta_B E_t V_{i,t+1}^B \\ & V_{i,t}^L = c_{i,t}^L + \beta_L E_t V_{i,t+1}^L \\ & V_{i,t}^S = \log\left(c_{S,t}^{1-\xi}H_S^\xi\right) + \beta_S E_t V_{i,t+1}^S \end{split}$$

ightharpoonup Perfect risk sharing within each type \implies aggregation.

Mortgage Technology

- Geometrically decaying perpetuities with fixed interest rate.
 - Pay interest r_t^* on start-of-period principal balance (tax deductible).
 - Pay fraction ν of principal balance, carry remaining (1ν) fraction into next period.
- ightharpoonup Fraction ho of borrowers move each period, prepay their loans.
 - Fraction η of moving households become active, eligible to buy housing.
- Active buyers choose loan size $M_{i,t}^*$ and house size $H_{i,t}^*$ subject to loan-to-value and payment-to-income constraints:

$$\mathbf{M}_{i,t}^* \leq \mathbf{\theta}_{t}^{\mathsf{LTV}} \mathbf{p}_{t} \mathbf{H}_{i,t}^*, \qquad \qquad \mathbf{M}_{i,t}^* \leq \frac{\left(\mathbf{\theta}_{t}^{\mathsf{PTI}} - \omega\right) \mathsf{income}_{i,t}}{r_{t}^* + \nu + \alpha}.$$

▶ Aggregate as in Greenwald (2018): Endogenous frac. F_t^{LTV} LTV-constrained in equilibrium.

Housing Technology

- ▶ Housing asset: Divisible, requires maintenance cost, owned by borrowers or landlords.
- Produced by construction firms using investment of the nondurable good (Z_t) and land (L_t) , where a fixed amount of land permits \bar{L} are issued each period.
- Construction firm's problem:

$$\max_{L_t, Z_t} p_t L_t^{\varphi} Z_t^{1-\varphi} - p_{L,t} L_t - Z_t$$

- ► Housing priced at marginal cost, but land prices rise as construction rises to create upward-sloping supply curve.
- ▶ Implies elasticity of investment to prices of $\varphi/(1-\varphi)$.

Heterogeneity

- Implementation of borrower and landlord heterogeneity:
 - Borrower i gets additional benefit $\omega_{i,t}^{B} rent_{t} H_{i,t}$ from ownership, where $\omega_{i,t}^{B} \stackrel{iid}{\sim} \Gamma_{\omega,B}$.
 - Landlords get additional benefit $\omega_{j,t}^L rent_t H_{j,t}$ from ownership for property j, where $\omega_{j,t}^L \stackrel{iid}{\sim} \Gamma_{\omega,L}$.
- ▶ Borrower interpretation: Variation in life cycle, preferences, credit score, ability to come up with down payment, etc.
- Landlord interpretation: Variation in rental suitability by property/geography.
 - Implicit assumption: New construction has same dist of "rentability" as existing stock.
- lacksquare Owned housing is reallocated to best suited agents of each type: Own if $\omega_{i,t}^j \geq \bar{\omega}_t^j$.

Borrower's Problem

Proof. Representative borrower chooses nondurable consumption $c_{B,t}$, size of new loans M_B^* , size of new housing purchases $H_{B,t}^*$ and total rental services $h_{B,t}$ subject to the budget constraint:

$$\begin{aligned} & \mathcal{C}_{B,t} \leq \underbrace{\frac{(1-\tau)y_{B,t}}{\text{after-tax income}}}_{\text{net mortgage iss.}} + \underbrace{\rho\eta\left(M_{B,t}^* - \pi^{-1}(1-\nu_B)M_{B,t-1}\right)}_{\text{net mortgage iss.}} - \underbrace{\pi^{-1}(1-\tau)X_{B,t-1}}_{\text{interest payment}} - \underbrace{\nu_B\pi^{-1}M_{B,t-1}}_{\text{principal payment}} \\ & - \underbrace{\rho\eta p_t\left(H_{B,t}^* - H_{B,t-1}\right)}_{\text{net housing purchases}} - \underbrace{\delta p_t H_{B,t-1}}_{\text{maintenance}} - \underbrace{\text{rent}_t\left(h_{B,t} - H_{B,t-1}\right)}_{\text{rent}} \\ & + \underbrace{\left(\int_{\bar{\omega}_{B,t-1}} \omega \ d\Gamma_{\omega,B}\right) \bar{H}_{t-1}}_{\text{other rebates}} + \underbrace{T_{B,t}}_{\text{other rebates}} \end{aligned}$$

and the borrowing (LTV + PTI) limit, applied at origination only.

owner surplus

Asset Pricing

ightharpoonup Key optimality conditions ($\mathcal{C}_t = \mu_{B,t} F_t^{LTV} \theta_t^{LTV}$): Details

$$p_t^{Supply} = E_t \left\{ \Lambda_{t+1}^L \left[\underbrace{\bar{\omega}_t^L + rent_{t+1}}_{\text{housing services}} + \underbrace{\left(1 - \delta\right) p_{t+1}}_{\text{continuation value}} \right] \right\}$$

$$p_{t}^{\text{Demand}} = \underbrace{\left(1 - \mathcal{C}_{t}\right)^{-1}}_{\text{credit conditions}} E_{t} \left\{ \Lambda_{t+1}^{B} \left[\underbrace{\bar{\omega}_{t}^{B} + \text{rent}_{t+1}}_{\text{housing services}} + \underbrace{\left(1 - \delta - (1 - \rho_{t+1})\mathcal{C}_{t+1}\right) p_{t+1}}_{\text{continuation value}} \right] \right\}$$

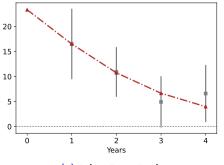
lacksquare In equilibrium, $(ar{\omega}^{\scriptscriptstyle B}_t, ar{\omega}^{\scriptscriptstyle L}_t)$ ensure $p^{\scriptscriptstyle {
m Demand}}_t = p^{\scriptscriptstyle {
m Supply}}_t$ and $H^{\scriptscriptstyle B}_t + H^{\scriptscriptstyle L}_t = ar{H}_t$, where

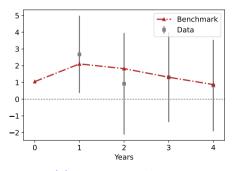
$$H_t^B = \left(1 - \Gamma_\omega^B(\bar{\omega}_t^B)\right) \bar{H}_t, \qquad H_t^L = \left(1 - \Gamma_\omega^L(\bar{\omega}_t^L)\right) \bar{H}_t$$

lacktriangle Key parameter is dispersion of Γ^L_ω distribution (more dispersed \Longrightarrow more inelastic supply).

- ▶ Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- Borrower heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

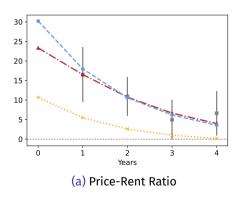
- ▶ Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- Borrower heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

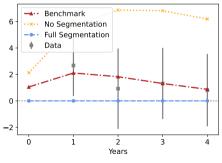



- ▶ Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

- Most parameters: Match external calibration targets or standard parameters.
 - Borrower pop and income shares, utility, construction, depreciation, taxes, etc.
- \triangleright Key parameter is landlord heterogeneity $(\sigma_{\omega,L})$ which we match to regressions.
- **Borrower** heterogeneity $(\sigma_{\omega,B})$: match uptake of First Time Homebuyer Credit estimated in Berger, Turner, Zwick (2020).
- Borrower patience controls extent to which demand shifts when credit changes.
 - Intuition: More impatience, more latent demand for credit.
 - Calibrate β_B using private mortgage insurance pricing: Indifferent between receiving 80% LTV loan and paying for FHA insurance at 95% LTV.
- Sensitivity analysis shows other parameters not important once we recalibrate to match our key empirical moment.

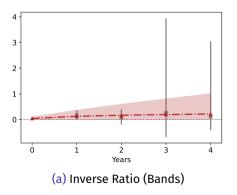
- ▶ Identification
- Model change in CLL as shock to real mortgage spreads for borrowers.
- ► Choose $\sigma_{\omega,L}$, along with size and persistence of shock, to minimize distance from empirical Loutskina-Strahan price-rent and homeownership IRFs.
- Fit in years 1-4.

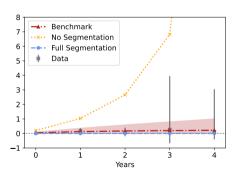




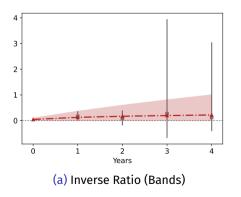
(a) Price-Rent Ratio

(b) Homeownership Rate


- ► Identification
- Requires substantial deviation from perfect rental markets.
- Benchmark has price response close to Full Segmentation model, but larger homeownership response.

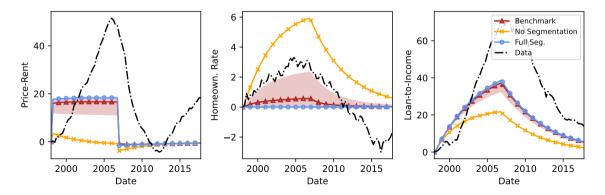


(b) Homeownership Rate

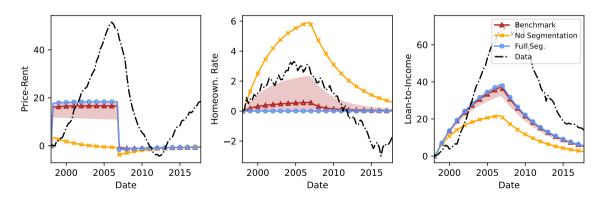

- ▶ Identification
- For confidence bands, turn to inverse slope estimates.
 - Characterize joint uncertainty, drops nuisance parameter of shock size.
 - Fit upper and lower confidence interval bounds.

(b) Inverse Ratio (Model Comparison)

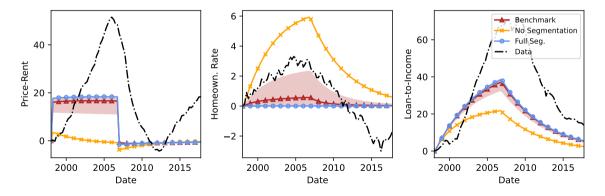
- ▶ Identification
- Cannot reject Full Segmentation, but can reject No Segmentation model.
- \blacktriangleright Directly estimating $\sigma_{\omega,L}$ to match ratio point estimates would yield steeper slope.

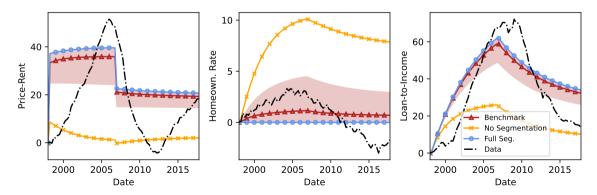

8
7
No Segmentation
Full Segmentation
Data

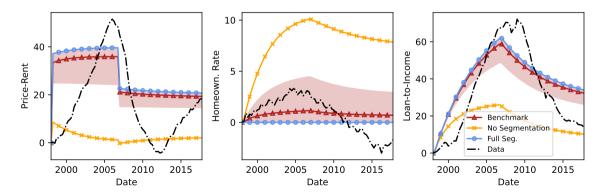
Data


1 2 3 4

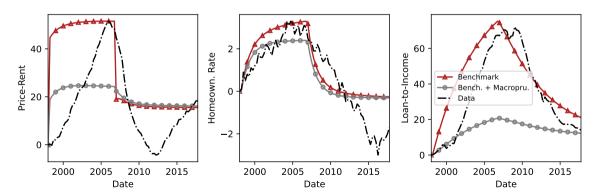
(b) Inverse Ratio (Model Comparison)


- Credit expansion: Increase max LTV from 85% to 99%, max PTI from 36% to 65%.
- ▶ Surprise arrival of policy in 1998 Q1, surprise reversal in 2007 Q1.
- Compute nonlinear perfect foresight paths.

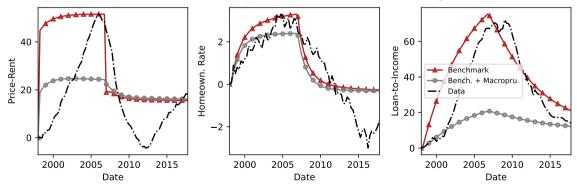

- ▶ Benchmark: Credit explains 32% of peak price-rent increase, 51% of peak LTI increase.
 - Using lower bound for slope, explains 22% of rise in price-rent, 45% of rise in LTI.
- ► Perfect rental markets: Credit explains -2% of price-rent, only 30% of peak LTI increase.


- ▶ Benchmark closer to complete segmentation: 36% of price-rent, 53% of peak LTI increase.
- ▶ But Benchmark allows for nonzero movement in homeownership.

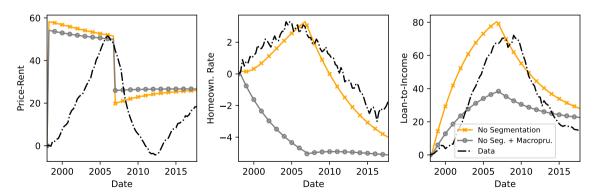
- Adding 2ppt drop in mortgage rates, we can explain 70% of the rise in price-to-rent ratios and 82% of the rise in loan-to-income ratios, and 35% of the rise in homeownership.
 - Lower bound slope explains 47% of rise in price-rent, 68% of rise in LTI, 136% of rise in HOR.
 - Upper bound (Full Seg) explains 77% of rise in price-rent, 86% of rise in LTI, 0% of rise in HOR.


- ► Contrast to 2% of rise in price-rent ratios and 36% of rise in LTI under No Segmentation.
- Extremely favorable credit terms without price appreciation leads to rise in homeownership 306% that of the data.

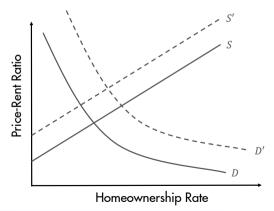
Boom Counterfactuals: Benchmark Model


- Add observed fall in interest rates, then use demand and supply shocks (shifts in means of $\Gamma_{\omega,B}$, $\Gamma_{\omega,L}$ to exactly explain rise in price-rent and homeownership).
- ► To capture bust, return credit limits to baseline, apply (i) 3% fall in mortgage rates and landlord discount rates; (ii) exclude 10% of borrowers from credit market.

Boom Counterfactuals: Benchmark Model


- ▶ Now **removing** credit expansion kills **53**% of boom in price-rent, **71**% of boom in LTI.
- Larger because of nonlinear interactions between credit and other shocks boosting house prices (Greenwald, 2018).
- Implies macroprudential, monetary policy can be effective at limiting house price booms.

Boom Counterfactuals: Benchmark Model

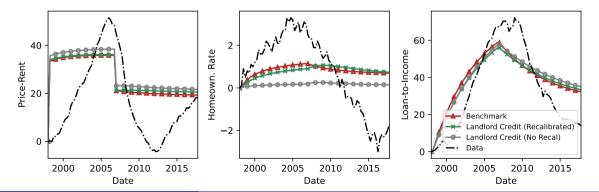


- ► Under No Segmentation, removing credit relaxation would remove 3% of boom in price-rent, 47% of boom in LTI.
- Difficult to distinguish using macro data alone, need IV estimates to tell whether macroprudential policy works.

Model Extensions: Landlord Credit

- So far, have assumed landlords don't use credit.
- ▶ If landlords used credit, expansion would also cause shift in the supply curve.
 - Alternative explanation for concurrent rise in price-rent and homeownership.

Model Extensions: Landlord Credit


- So far, have assumed landlords don't use credit.
- If landlords used credit, expansion would also cause shift in the supply curve.
 - Alternative explanation for concurrent rise in price-rent and homeownership.
- ▶ Implementation: landlords can borrow with mortgage tech., 65% LTV limit at origination.
- New equilibrium condition $(C_{L,t} = \mu_{L,t}\theta^L)$

$$p_{t}^{\text{Supply}} = \underbrace{\left(\mathbf{1} - \mathcal{C}_{\text{L},t}\right)^{-1}}_{\text{credit conditions}} E_{t} \left\{ \Lambda_{t+1}^{L} \left[\underbrace{\bar{\omega}_{t}^{L} + \text{rent}_{t+1}}_{\text{housing services}} + \underbrace{\left(\mathbf{1} - \delta - (\mathbf{1} - \rho_{t+1})\mathcal{C}_{\text{L},t+1}\right) p_{t+1}}_{\text{continuation value}} \right] \right\}$$

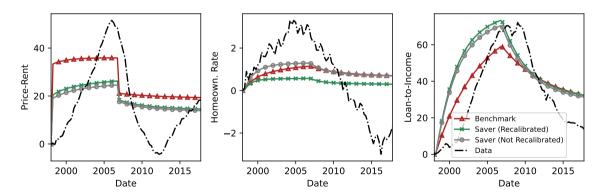
allows credit to directly influence supply.

Landlord Credit

- ▶ Below: credit standards + falling rates experiment.
- ▶ Compare Benchmark to model with landlord credit with same $\sigma_{\omega,L}$ ("No Recal") and landlord credit with recalibrated $\sigma_{\omega,L}$ ("Recalibrated").
- Result: Adding landlord credit strengthens effect on PRR, weakens effect on HOR even after recalibration.

Model Extensions: Flexible Saver Demand

- Next extension: Relax assumption of fixed (segmented) saver demand.
- ► New equilibrium condition:


$$p_{t}^{Saver} = E_{t} \left\{ \Lambda_{t+1}^{S} \left[\underbrace{u_{h,t}^{S}/u_{c,t}^{S}}_{\text{housing services}} + \underbrace{\left(1 - \delta\right)p_{t+1}}_{\text{continuation value}} \right] \right\}$$

where saver housing $H_{S,t}$ must equalize saver and borrower/landlord prices.

- ▶ Because saver demand not directly influenced by credit, saver housing margin can also absorb effect of credit on house prices.
 - Same mechanism discussed in Landvoigt, Piazzesi, and Schneider (2015).
- Adjustment occurs (unrealistically) along intensive margin due to divisible housing.
 - Typically true even in models with different housing sizes/types.

Saver Demand

- **>** Below: Credit standards + falling rates experiment. Compare Benchmark to models with unrestricted saver housing demand, with and without recalibrating $\sigma_{\omega,L}$.
- Nontrivially dampens price-rent impact even after recalibration, but doesn't overturn main result that credit significantly affects prices.

Conclusion

- What role did credit play in the housing boom and bust?
- Empirical results:
 - Larger, significant response of price-rent ratio to identified credit shocks
 - Smaller, insignificant response for homeownership.
 - Ratio (tenure supply slope) at least 4.
- Quantitative model calibrated to match empirical findings (landlord supply elasticity):
 - Allows us to consider cases between fixed homeownership rate and perfect arbitrage.
 - Main finding: Credit conditions explain 32% 53% of price-rent growth during boom.
 - Frictions key to effectiveness of macroprudential/monetary policy in dampening price booms.

Appendix

Mortgage Aggregation

- Want heterogeneity so that endogenous fraction are constrained by PTI.
- ▶ Idiosyncratic labor efficiency shocks $e_{i,t} \stackrel{iid}{\sim} \Gamma_e$, so individual borrower's income is

$$income_{i,t} = w_t n_{b,t} e_{i,t}.$$

- Shocks affect only credit limits, not consumption or labor supply (due to insurance, timing).
 - Equivalent to any shock causing variation in house price/income ratios.
- PTI binds for

$$e_{i,t} \leq \bar{e}_t \equiv \frac{\theta^{\mathsf{LTV}} p_t^{\mathsf{h}} h_t}{(\theta^{\mathsf{PTI}} - \omega) \mathsf{w}_t n_{b,t} / (q_t^* + \alpha)}.$$

Fraction constrained by LTV:

$$F_t^{LTV} = 1 - \Gamma_e(\bar{e}_t).$$

Laws of Motion

▶ Laws of motion for principal $(M_{B,t})$ and interest $(X_{B,t})$:

$$\begin{split} M_{B,t} &= \underbrace{\rho \eta M_{B,t}^*}_{\text{new loans}} + \underbrace{(1-\rho)(1-\nu_B)\pi^{-1}M_{B,t-1}}_{\text{old loans}} \\ X_{B,t} &= \underbrace{\rho \eta r_{B,t}^* M_{B,t}^*}_{\text{interest on new loans}} + \underbrace{(1-\rho)(1-\nu_B)\pi^{-1}X_{B,t-1}}_{\text{interest on old loans}} \\ H_{B,t} &= \underbrace{\rho \eta H_{B,t}^*}_{\text{new housing}} + \underbrace{(1-\rho)H_{B,t-1}}_{\text{old housing}}. \end{split}$$

▶ Back

Timing

Timing and risk sharing create representative agent of each type with meaningful within-period heterogeneity:

- 1. Fraction ρ of borrowers are selected to participate in the housing and mortgage markets.
- 2. Active borrowers select whether to own or rent.
- 3. Active borrowers choosing to own decide how much housing to buy.
- 4. Active borrowers choosing to own draw an income shock. This determines their PTI limit, which combined with the economy LTV limit sets their debt limit.
- 5. Complete markets contracts pay out, and all borrowers choose their consumption of nondurables and housing services.

Equilibrium Definition

A competitive equilibrium consists of:

- ► States $H_{B,t-1}$, $M_{B,t-1}$, interest payment $X_{B,t-1}$, \bar{H}_{t-1} .
- ▶ Borrower controls $c_{B,t}$, $h_{B,t}$, $M_{B,t}^*$, $H_{B,t}^*$: Landlord controls $c_{L,t}$, $H_{L,t}$; Saver controls $c_{S,t}$, $M_{S,t}^*$; Construction firm controls L_t , Z_t . Aggregates pin down cutoffs $\bar{\omega}_t^B$ and $\bar{\omega}_t^L$.
- ▶ Prices p_t , rental rate q_t , interest rate r_t^* .

such that:

- 1. Borrowers, landlords, savers, and construction firms all optimize.
- 2. Laws of motion for M, X, and H hold.
- 3. Housing, permits, and mortgage markets clear.
- 4. Aggregate resource constraint holds.

▶ Borrower's Problem

Landlord's Problem

▶ Representative landlord chooses nondurable consumption $c_{L,t}$, size of new housing purchases $H_{L,t}^*$ subject to the budget constraint

$$c_{L,t} \leq \underbrace{\frac{(1-\tau)y_{L,t}}_{\text{after-tax income}} - \underbrace{\rho_{L,t}p_t\left(H_{L,t}^* - H_{L,t-1}\right)}_{\text{net housing purchases}} - \underbrace{\delta p_t H_{L,t-1}}_{\text{maintenance}} + \underbrace{q_t H_{L,t-1}}_{\text{rent}} + \underbrace{\left(\int_{\bar{\omega}_{L,t-1}} \omega \, d\Gamma_{\omega,L}\right) \bar{H}_{t-1}}_{\text{owner surplus}} + \underbrace{T_{L,t}}_{\text{other rebates}},$$

Saver's Problem

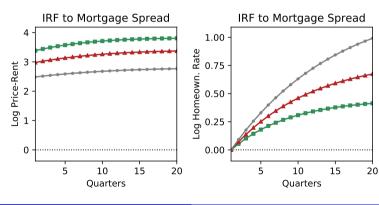
Saver chooses nondurable consumption $c_{S,t}$, one-period bonds B_t , new mortgage issuance M_t^* , subject to the budget constraint

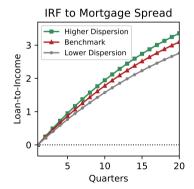
$$c_{S,t} \leq \underbrace{(1-\tau)y_{S,t}}_{\text{after-tax income}} - \underbrace{(B_t - R_{t-1}B_{t-1})}_{\text{net bond purchases}} - \underbrace{\rho_t \left(H_{S,t}^* - H_{S,t-1}\right)}_{\text{net housing purchases}} - \underbrace{\delta\rho_t H_{S,t-1}}_{\text{maintenance}} + \underbrace{T_{S,t}}_{\text{rebates}} \\ + \underbrace{\pi^{-1}X_{B,t-1}}_{\text{interest payment}} - \underbrace{\nu_B \pi^{-1}M_{B,t-1}}_{\text{principal payment}} - \underbrace{\rho_{B,t} \left(\exp(\Delta_{B,t})M_t^* - \pi^{-1}(1-\nu_B)M_{B,t-1}\right)}_{\text{net mortgage iss.}}$$

and the fixed demand constraint $H_{S,t} = \bar{H}_{S}$.

C_t Details

- $\mathcal{C}_t = \mu_{B,t} F_t^{LTV} \theta_t^{LTV}$ represents the shadow value of additional credit that can be collateralized by an additional dollar of housing.
 - Extra dollar of housing can collateralize θ_t^{LTV} of new debt for an LTV-constrained borrower.
 - Fraction of LTV-constrained borrowers is F_t^{LTV} .
 - Lagrange multiplier $\mu_{B,t}$ on borrowing constraint converts quantity of new credit to value of credit from borrower's perspective.


Parameterization: Heterogeneity


Parameterize Γ^{j}_{ω} distributions as logistic:

$$\Gamma_{\omega}^{j}(\omega) = \left[1 + \exp\left\{-\left(rac{\omega - \mu_{\omega,j}}{\sigma_{\omega,j}}
ight)
ight\}
ight]^{-1} \qquad j \in \{B,L\}.$$

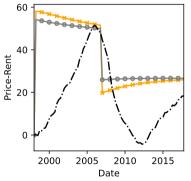
▶ Back

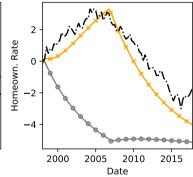
- 'Higher Dispersion' series doubles the dispersion to $\sigma_{o,l} = 0.030$, ratio of 9.3.
- "Lower Dispersion" series halves the dispersion to $\sigma_{\omega,L} = 0.007$, ratio of 2.8.

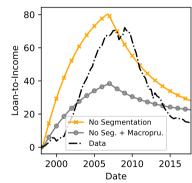
Calibration: Parameter Values

Parameter	Name	Value	Internal	Target/Source				
Demographics and Preferences								
Borrower pop. share	χв	0.626	N	1998 SCF				
Borrower inc. share	S_B	0.525	N	1998 SCF				
Landlord pop. share	χ_{L}	0	N	Normalization				
Borr. discount factor	$eta_{ extbf{B}}$	0.974	Υ	PMI Rate (see text)				
Saver discount factor	eta_{S}	0.992	Υ	Nom. interest rate = 6.46%				
Landlord discount factor	eta_{L}	0.974	Υ	Equal to eta_{B}				
Housing utility weight	ξ	0.2	N	Davis and Ortalo-Magne (2011)				
Saver housing demand	$ar{H}_{S}$	5.299	Υ	Steady state optimum				
Ownership Benefit Heterogeneity								
Landlord het. (location)	$\mu_{\omega,L}$	-0.109	Υ	Avg. homeownership rate				
Landlord het. (scale)	$\sigma_{\omega,L}$	2.877	Υ	Empirical elasticities				
Borr. het. (location)	$\mu_{\omega,B}$	0.217	Υ	Borr. VTI (1998 SCF)				
Borr. het. (scale)	$\sigma_{\omega,B}$	0.319	Υ	Berger, Turner, Zwick (see text)				

Calibration: Parameter Values

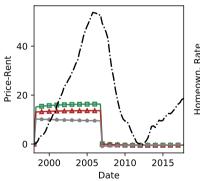


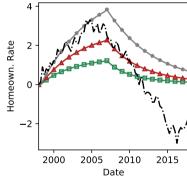

Parameter	Name	Value	Internal	Target/Source			
Technology and Government							
New land per period	Ī	0.109	Υ	Residential inv = 5% of GDP			
Land share of construction	φ	0.371	N	Res inv. elasticity in boom			
Housing depreciation	δ	0.005	N	Standard			
Inflation	$\bar{\pi}$	1.008	N	3.22% Annualized			
Tax rate	au	0.204	N	Standard			
Mortgage Contracts							
Refinancing rate	$ar{ ho}$	0.034	N	Greenwald (2018)			
Loan amortization	ν	0.004	N	Greenwald (2018)			
LTV Limit	$ heta^{LTV}$	0.85	N	Greenwald (2018)			
PTI Limit	$ heta^{ extsf{PTI}}$	0.36	N	Greenwald (2018)			
PTI offset (taxes etc.)	α	0.001	N	Greenwald (2018)			


Boom Counterfactuals: Beliefs Only

▶ Back

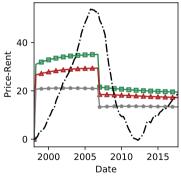
Removing credit expansion + interest rates (leaving beliefs only) reduces rise in price-rent ratios by 3%, rise in LTI by 47%.

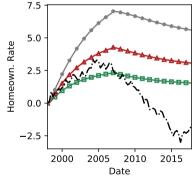


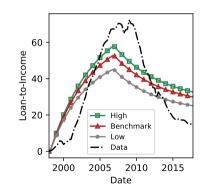


Credit Expansion: Robustness

Credit expansion alone explains 18% of increase in price-rent ratios when matching slope of 2.5, 31% for slope of 10 (28% in baseline)

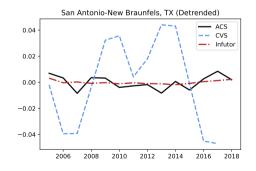


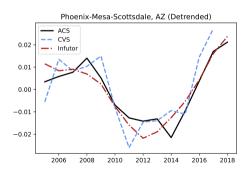



Credit Expansion + Rates: Robustness

Credit expansion plus 2ppt drop in rates explains 40% of increase in price-rent ratios when matching slope of 2.5, 66% for slope of 10 (60% in baseline)

New Homeownership Data

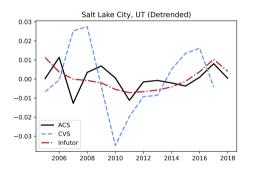


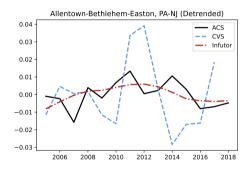

- ▶ Main challenge to current empirics is imprecision of homeownership estimates.
 - Census Vacancy Survey is noisy and has broken panel due to CBSA redefinition every 10 years.
 - ACS is better, but only begins in 2005.
- Our approach): construct our own homeownership rates directly from microdata.
 - Infutor data tracking address history of most adults.
 - ZTRAX deeds data.
- By merging these, we know for each address at each time (i) who lives there, and (ii) who the owners are.
 - If there is any overlap (using last name for now) then the unit is owner-occupied.
 - Remove trends in Infutor coverage by benchmarking to decennial census + ACS.

Homeownership Data Comparison

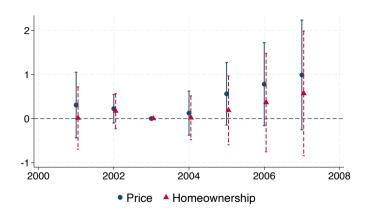
▶ Back

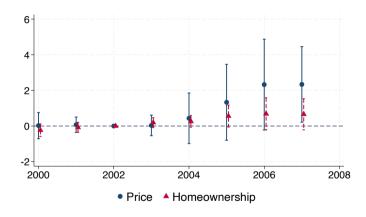
- Compare ACS, CVS, Infutor (new) series.
- Remove time, geographic fixed effects, as well as location-specific linear trend.
- Removes noise but still able to pick up actual movements well.

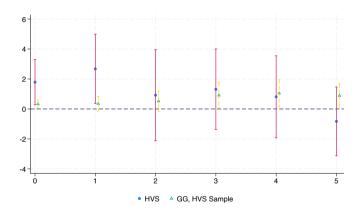




Homeownership Data Comparison


► Additional examples of noise reduction:


DiMaggio-Kermani With Census HVS Data


Mian-Sufi With Census HVS Data

Comparison of HOR Data

